120 research outputs found

    Metsien kartoitus ja seuranta aktiivisella 3D-kaukokartoituksella

    Get PDF
    The main aim in forest mapping and monitoring is to produce accurate information for forest managers with the use of efficient methodologies. For example, it is important to locate harvesting sites and stands where forest operations should be carried out as well as to provide updates regarding forest growth, among other changes in forest structure. In recent years, remote sensing (RS) has taken a significant technological leap forward. It has become possible to acquire three-dimensional (3D), spatially accurate information from forest resources using active RS methods. In practical applications, mainly 3D information produced by airborne laser scanning (ALS) has opened up groundbreaking potential in natural resource mapping and monitoring. In addition to ALS, new satellite radars are also capable of acquiring spatially accurate 3D information. The main objectives of the present study were to develop 3D RS methodologies for large-area forest mapping and monitoring applications. In substudy I, we aim to map harvesting sites, while in substudy II, we monitor changes in the forest canopy structure. In studies III-V, efficient mapping and monitoring applications were developed and tested. In substudy I, we predicted plot-level thinning maturity within the next 10-year planning period. Stands requiring immediate thinning were located with an overall accuracy of 83%-86% depending on the prediction method applied. The respective prediction accuracy for stands reaching thinning maturity within the next 10 years was 70%-79%. Substudy II addressed natural disturbance monitoring that could be linked to forest management planning when an ALS time series is available. The accuracy of the damaged canopy cover area estimate varied between -16.4% to 5.4%. Substudy II showed that changes in the forest canopy structure can be monitored with a rather straightforward method by contrasting bi-temporal canopy height models. In substudy III, we developed a RS-based forest inventory method where single-tree RS is used to acquire modelling data needed in area-based predictions. The method uses ALS data and is capable of producing accurate stand variable estimates even at the sub-compartment level. The developed method could be applied in areas with sparse road networks or when the costs of fieldwork must be minimized. The method is especially suitable for large-area biomass or stem volume mapping. Based on substudy IV, the use of stereo synthetic aperture radar (SAR) satellite data in the prediction of plot-level forest variables appears to be promising for large-area applications. In the best case, the plot-level stem volume (VOL) was predicted with a relative error (RMSE%) of 34.9%. Typically, such a high level of prediction accuracy cannot be obtained using spaceborne RS data. Then, in substudy V, we compared the aboveground biomass and VOL estimates derived by radargrammetry to the ALS estimates. The difference between the estimation accuracy of ALS based and TerraSAR X based features was smaller than in any previous study in which ALS and different kinds of SAR materials have been compared. In this thesis, forest mapping and monitoring applications using active 3D RS were developed. Spatially accurate 3D RS enables the mapping of harvesting sites, the monitoring of changes in the canopy structure and even the making of a fully RS-based forest inventory. ALS is carried out at relatively low altitudes, which makes it relatively expensive per area unit, and other RS materials are still needed. Spaceborne stereo radargrammetry proved to be a promising technique to acquire additional 3D RS data efficiently as long as an accurate digital terrain model is available as a ground-surface reference.Metsien kartoitus ja seuranta aktiivisella 3D-kaukokartoituksella. MetsĂ€varoista kerĂ€tÀÀn mahdollisimman tarkkaa tietoa metsĂ€nomistajan pÀÀtöksenteon tueksi. Tietoa kerĂ€tÀÀn puustotunnusten lisĂ€ksi toimenpidekohteista ja metsĂ€ssĂ€ tapahtuvista muutoksista, kuten kasvusta ja luonnontuhoista. Laajojen metsĂ€alueiden kartoituksessa kĂ€ytetÀÀn apuna lentokoneesta tai satelliiteista tehtĂ€vÀÀ kaukokartoitusta. Metsien kaukokartoitus on viime vuosina ottanut merkittĂ€vĂ€n kehitysaskeleen, kun aktiiviset 3D-kaukokartoitusmenetelmĂ€t ovat yleistyneet. Aktiivisessa kaukokartoituksessa, kuten laserkeilauksessa ja tutkakuvauksessa instrumentti vastaanottaa lĂ€hettĂ€mÀÀnsĂ€ sĂ€teilyĂ€. Laserkeilaus tuottaa kohteesta 3D-havaintoja, jotka metsĂ€alueilla kuvaavat suoraan puuston pituutta ja metsĂ€n tiheyttĂ€. Laserkeilauksella kohteesta saadaan tĂ€llĂ€ hetkellĂ€ tyypillisesti 0,5−20 havaintoa/m2. Laserkeilaus tehdÀÀn lentokoneesta 500−3000 m korkeudesta, jolloin aineiston hankinta laajoilta alueilta on kallista verrattuna satelliittikuviin. Myös satelliittitutkakuvilta voidaan tuottaa spatiaalisesti tarkkaa 3D-tietoa, jonka pistetiheys on tosin huomattavasti harvempaa kuin laserkeilauksella. Tutkimuksessa kehitettiin sovelluksia metsien kartoitukseen ja seurantaan hyödyntĂ€en aktiivisia 3D-kaukokartoitusmenetelmiĂ€. Metsiköiden toimenpidetarvetta ennustettiin onnistuneesti laserkeilausaineiston avulla. Harvennettaviksi luokitellut metsiköt pystyttiin kartoittamaan 70%−86% tarkkuudella. Kahden ajankohdan laserkeilausaineistoja kĂ€ytettiin lumituhojen vuoksi vaurioituneiden puiden kartoittamiseen. Tuhoutuneen latvuspinta-alan kartoitus perustui laserkeilausaineistosta tuotettujen latvusmallien erotuskuviin. Kehitetty menetelmĂ€ soveltuu latvusrakenteessa tapahtuneiden muutosten, kuten lumi- ja tuulituhojen, kartoittamiseen ja seurantaan. Laajojen metsĂ€alueiden kartoitus perustuu yleensĂ€ kaksivaiheeseen inventointimenetelmÀÀn, jossa kĂ€ytetÀÀn maastomittauksia ja tiedon yleistyksessĂ€ kaukokartoitusaineistoa. Kartoitusta voidaan tehostaa joko maastomittauksia vĂ€hentĂ€mĂ€llĂ€ tai hyödyntĂ€mĂ€llĂ€ mahdollisimman halpaa kaukokartoitusaineistoa. Tutkimuksessa kehitettiin tĂ€ysin kaukokartoitukseen perustuva kaksivaiheinen metsien inventointimenetelmĂ€. Tarvittava maastotieto mitattiin suoraan laserkeilausaineistosta. MenetelmĂ€ soveltuu puuston tilavuuden tai biomassan kartoitukseen erityisesti alueille, joilla maastomittausten kustannukset ovat merkittĂ€vĂ€t. Satelliittitutkakuvat ovat potentiaalinen aineisto etenkin laajojen alueiden metsĂ€varojen seurannassa. Synteettisen apertuurin tutka (SAR)-stereokuvilta mitattiin automaattisesti 3D-pisteitĂ€, joita kĂ€ytettiin puustotunnusten ennustamisessa. Keskitilavuus ennustettiin parhaimmillaan lĂ€hes samalla tarkkuudella kuin laserkeilauksella. Tutkimus osoitti aktiivisen 3D-kaukokartoitustiedon mahdollistavan entistĂ€ yksityiskohtaisemman metsien kartoituksen ja seurannan

    Biomass Representation in Synthetic Aperture Radar Interferometry Data Sets

    Get PDF
    This work makes an attempt to explain the origin, features and potential applications of the elevation bias of the synthetic aperture radar interferometry (InSAR) datasets over areas covered by vegetation. The rapid development of radar-based remote sensing methods, such as synthetic aperture radar (SAR) and InSAR, has provided an alternative to the photogrammetry and LiDAR for determining the third dimension of topographic surfaces. The InSAR method has proved to be so effective and productive that it allowed, within eleven days of the space shuttle mission, for acquisition of data to develop a three-dimensional model of almost the entire land surface of our planet. This mission is known as the Shuttle Radar Topography Mission (SRTM). Scientists across the geosciences were able to access the great benefits of uniformity, high resolution and the most precise digital elevation model (DEM) of the Earth like never before for their a wide variety of scientific and practical inquiries. Unfortunately, InSAR elevations misrepresent the surface of the Earth in places where there is substantial vegetation cover. This is a systematic error of unknown, yet limited (by the vertical extension of vegetation) magnitude. Up to now, only a limited number of attempts to model this error source have been made. However, none offer a robust remedy, but rather partial or case-based solutions. More work in this area of research is needed as the number of airborne and space-based InSAR elevation models has been steadily increasing over the last few years, despite strong competition from LiDAR and optical methods. From another perspective, however, this elevation bias, termed here as the “biomass impenetrability”, creates a great opportunity to learn about the biomass. This may be achieved due to the fact that the impenetrability can be considered a collective response to a few factors originating in 3D space that encompass the outermost boundaries of vegetation. The biomass, presence in InSAR datasets or simply the biomass impenetrability, is the focus of this research. The report, presented in a sequence of sections, gradually introduces terminology, physical and mathematical fundamentals commonly used in describing the propagation of electromagnetic waves, including the Maxwell equations. The synthetic aperture radar (SAR) and InSAR as active remote sensing methods are summarised. In subsequent steps, the major InSAR data sources and data acquisition systems, past and present, are outlined. Various examples of the InSAR datasets, including the SRTM C- and X-band elevation products and INTERMAP Inc. IFSAR digital terrain/surface models (DTM/DSM), representing diverse test sites in the world are used to demonstrate the presence and/or magnitude of the biomass impenetrability in the context of different types of vegetation – usually forest. Also, results of investigations carried out by selected researchers on the elevation bias in InSAR datasets and their attempts at mathematical modelling are reviewed. In recent years, a few researchers have suggested that the magnitude of the biomass impenetrability is linked to gaps in the vegetation cover. Based on these hints, a mathematical model of the tree and the forest has been developed. Three types of gaps were identified; gaps in the landscape-scale forest areas (Type 1), e.g. forest fire scares and logging areas; a gap between three trees forming a triangle (Type 2), e.g. depending on the shape of tree crowns; and gaps within a tree itself (Type 3). Experiments have demonstrated that Type 1 gaps follow the power-law density distribution function. One of the most useful features of the power-law distributed phenomena is their scale-independent property. This property was also used to model Type 3 gaps (within the tree crown) by assuming that these gaps follow the same distribution as the Type 1 gaps. A hypothesis was formulated regarding the penetration depth of the radar waves within the canopy. It claims that the depth of penetration is simply related to the quantisation level of the radar backscattered signal. A higher level of bits per pixels allows for capturing weaker signals arriving from the lower levels of the tree crown. Assuming certain generic and simplified shapes of tree crowns including cone, paraboloid, sphere and spherical cap, it was possible to model analytically Type 2 gaps. The Monte Carlo simulation method was used to investigate relationships between the impenetrability and various configurations of a modelled forest. One of the most important findings is that impenetrability is largely explainable by the gaps between trees. A much less important role is played by the penetrability into the crown cover. Another important finding is that the impenetrability strongly correlates with the vegetation density. Using this feature, a method for vegetation density mapping called the mean maximum impenetrability (MMI) method is proposed. Unlike the traditional methods of forest inventories, the MMI method allows for a much more realistic inventory of vegetation cover, because it is able to capture an in situ or current situation on the ground, but not for areas that are nominally classified as a “forest-to-be”. The MMI method also allows for the mapping of landscape variation in the forest or vegetation density, which is a novel and exciting feature of the new 3D remote sensing (3DRS) technique. Besides the inventory-type applications, the MMI method can be used as a forest change detection method. For maximum effectiveness of the MMI method, an object-based change detection approach is preferred. A minimum requirement for the MMI method is a time-lapsed reference dataset in the form, for example, of an existing forest map of the area of interest, or a vegetation density map prepared using InSAR datasets. Preliminary tests aimed at finding a degree of correlation between the impenetrability and other types of passive and active remote sensing data sources, including TerraSAR-X, NDVI and PALSAR, proved that the method most sensitive to vegetation density was the Japanese PALSAR - L-band SAR system. Unfortunately, PALSAR backscattered signals become very noisy for impenetrability below 15 m. This means that PALSAR has severe limitations for low loadings of the biomass per unit area. The proposed applications of the InSAR data will remain indispensable wherever cloud cover obscures the sky in a persistent manner, which makes suitable optical data acquisition extremely time-consuming or nearly impossible. A limitation of the MMI method is due to the fact that the impenetrability is calculated using a reference DTM, which must be available beforehand. In many countries around the world, appropriate quality DTMs are still unavailable. A possible solution to this obstacle is to use a DEM that was derived using P-band InSAR elevations or LiDAR. It must be noted, however, that in many cases, two InSAR datasets separated by time of the same area are sufficient for forest change detection or similar applications

    Feature extraction and selection in remote sensing-aided forest inventory

    Get PDF
    This dissertation explored the potential of image features derived from remotely sensed data in the context of large-area forest inventory. The study areas were located in Finnish boreal forests, with one exception in Northern Minnesota, USA. Estimation of forest variables was carried out at pixel (or an equidistant grid) level. The non-parametric k nearest neighbour estimation method was applied throughout the study. The used remotely sensed data included Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite images, colour infra-red aerial photographs, TerraSAR-X radar and airborne laser scanning (ALS) data. An indicative suitability order of these image types for estimation of forest variables was ALS, TerraSAR-X, aerial photographs and Landsat 7 ETM+. Special emphasis was placed on combining features extracted from individual remotely sensed data sources and searching for sets of image features that led to the best performance for estimation of forest variables. Selection of the image features was mainly carried out using a genetic algorithm. The resulting relative root mean square errors (RMSEs) ranged from 23% to 77% in the case of estimating mean volume of growing stock. The best results were obtained employing ALS and aerial photograph-based feature combinations. These combinations led to relative RMSEs of 23 30% when estimating mean volume of growing stock, depending on the landscape complexity. Combining image types with complementary properties typically improved the estimation accuracy. Automatic selection of image feature sets greatly reduced noise and dimensionality of the large feature sets used as input data and resulted in better performance in terms of estimation error. In studies employing ALS data, the ALS observations describing the vertical structure of forest stands played a critical role in decreasing the estimation error.Yksi tapa hyödyntÀÀ kaukokartoitusaineistoja metsien inventoinnissa on kÀyttÀÀ niistÀ irrotettavia tilastollisia tunnuksia, nk. piirteitÀ ja yleistÀÀ maastossa mitattujen koealojen tiedot nÀiden piirteiden avulla jatkuvaksi pinnaksi koko tarkasteltavalle alueelle. Tavallisimmat kaukokartoitusaineiston kuvatulkintapiirteet ovat karkearesoluutioisen kuvan pikselien sÀvyarvot tai hienoresoluutioiselta kuvalta esim. maastokoealan kokoa vastaaville ruuduille lasketut sÀvyarvojen keskiarvot ja keskihajonnat. Arvojen jÀrjestÀytymistÀ, tekstuuria, voidaan myös hyödyntÀÀ. NÀitÀ piirteitÀ on mahdollista irrottaa hyvin suuri joukko, etenkin jos yhdistellÀÀn erilaisia, toistensa ominaisuuksia tÀydentÀviÀ aineistotyyppejÀ. Kaikki piirteet eivÀt kuitenkaan ole hyödyllisiÀ kuvatulkintaprosessissa osa voi olla jopa haitallisia. LisÀksi samaa asiaa kuvaavat piirteet ovat turhia ja kovin suuri mÀÀrÀ on laskennallisesti työlÀs sekÀ haittaa joidenkin menetelmien toimivuutta. Piirteiden joukosta on siksi syytÀ valita pienempiÀ osajoukkoja, joiden kyky erotella erilaisia metsÀkohteita on mahdollisimman suuri. TÀssÀ työssÀ paneuduttiin eri kuvatyypeistÀ irrotettujen piirteiden yhdistelyyn sekÀ mahdollisimman toimivien, suppeiden piirreyhdistelmien valintaan. Piirteiden valinta tehtiin pÀÀasiassa geneettisen algoritmin avulla. Kaukokartoitusaineistona oli satelliittikuvia, tutkakuvia, ilmakuvia sekÀ lentokoneesta tehtÀvÀn laserkeilauksen (ALS) pisteistöjÀ. Puustotunnukset saatiin maastossa mitatuilta koealoilta. Tutkimusalueita oli useita, pÀÀasiassa Suomessa. Halutunkokoisille kuvan ruuduille tuotettiin puustotunnukset antamalla niille muutaman kuvapiirteiltÀÀn samankaltaisimman maastokoealan tunnukset (ns. k:n lÀhimmÀn naapurin menetelmÀ). Eri piirreyhdistelmien tuottamaa virhettÀ arvioitiin ristiinvalidoinnin avulla. Tuloksina saadut suhteelliset keskineliövirheen neliöjuuret (RMSE) asettuivat vÀlille 23 77 %, kun kyseessÀ oli puuston keskitilavuuden arviointi. Parhaat tulokset saatiin yhdistelemÀllÀ ALS- ja ilmakuvapiirteitÀ. TÀllöin suhteelliset RMSE-arvot puuston keskitilavuudelle olivat 23 30 %, maisemakuvasta riippuen. YleensÀ toisiaan tÀydentÀvien kuvatyyppien kÀyttö paransi arvioiden tarkkuutta. Piirrevalinta vÀhensi suuresti hÀlyn sekÀ piirteiden mÀÀrÀÀ alkuperÀiseen syötteeseen verrattuna ja johti parempaan estimointitulokseen

    Hemiboreaalsete metsade kaardistamine interferomeetrilise tehisava-radari andmetelt

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsioone.KĂ€esolev doktoritöö uurib tehisavaradari (SAR) kasutusvĂ”imalusi metsa kĂ”rguse hindamiseks hemiboreaalsete metsade vööndis. Uurimistöö viidi lĂ€bi Tartu ÜliÂŹkooli, Tartu Observatooriumi, Aalto Ülikooli, Euroopa Kosmoseagentuuri (ESA) kaugseire keskuse ESRIN ja Reach-U koostöös. Uurimistöös kasutatud satelliidiÂŹandmed on pĂ€rit Saksa Kosmosekeskuse (DLR) kĂ”rglahutusega bistaatilise X-laineala tehisavaradari TanDEM-X satelliidipaarilt. Sagedasti uuenevad satelliidiandmed, nende globaalne katvus ja kĂ”rge ruumiÂŹline lahutus vĂ”imaldavad tehisavaradari abil kaardistada metsi ning nendes toimuÂŹvaid muutusi suurtel maa-aladel. Radari abil on vĂ”imalik saada kĂ”rge lahutusvĂ”imega pilte, mis on tundlikud taimestikule, maapinna karedusele ja dielektrilistele omadustele. SĂŒnkroonis lendava radaripaari samaaegselt tehtud pildid elimineerivad vĂ”imalikud ajalised muutused taimestikus ning tĂ€nu sellele on radariandmetest vĂ”imalik tuletada metsade vertikaalset struktuuri ja kĂ”rgust. Uurimistöös kĂ€sitletakse tehisavaradari interferomeetrilise koherentsuse tundÂŹlikkust metsa kĂ”rguse suhtes ning analĂŒĂŒsitakse, millised keskkonna ja klimaatiÂŹlised tingimused ning satelliidi orbiidiga seotud parameetrid mĂ”jutavad radariÂŹpiltidelt erinevate puuliikide kĂ”rguse hindamise tĂ€psust. Lisaks keskendub vĂ€itekiri interferomeetrilisele koherentsusele tuginevate mudelite analĂŒĂŒsiÂŹmisele ning nende tĂ€psuse hindamisele operatiivse metsa kĂ”rguse kaardistamise raken-duseks. Vaatluse alla on vĂ”etud kolm testala, mis asuvad Soomaa rahvuspargis, VĂ”rtsjĂ€rve idakaldal Rannus ja Peipsiveere looduskaitsealal ning katavad kokku 2291 hektarit metsa. 23 TanDEM-X satelliidipildi koherentsuspilte vĂ”rreldakse samadel testaladel aerolaserskaneerimise (LiDAR) abil mÔÔdetud puistute kĂ”rguÂŹsega, mis on omakorda jagatud kolme rĂŒhma (kuused, mĂ€nnid ja laiaÂŹlehised segametsad). RVoG (Random Volume over Ground) taimekatte mudel ning sellest tuleÂŹtatud lihtsamad pooleempiirilised mudelid sobituvad olemasolevate TanDEM-X koherentsuse ning LiDARi metsa puistute kĂ”rgusandmetega hĂ€sti. Töö tuleÂŹmused kinnitavad, et tulevikus on suurte ja erinevatest metsatĂŒĂŒpidest koosneÂŹvate metsade kĂ”rguse kosmosest kaardistamisel otstarbekas kasutusele vĂ”tta esmalt just soovitatud lihtsamad ja universaalsemad mudelid.This thesis presents research in the field of radar remote sensing and contributes to the forest monitoring application development using space-borne synthetic aperture radar (SAR). Satellite data is particularly useful for large-scale forestry applications making high revisit monitoring of the state of forests worldwide possible. The sensitivity of SAR to the dielectric and geometrical properties of the targets, penetration capacity and coherent imaging properties make it a unique tool for mapping and monitoring forest biomes. SAR satellites are also capable of retrieving additional information about the structure of the forest, tree height and biomass estimates as an essential input for monitoring the changes in the carbon stocks. Interferometric SAR (InSAR) is an advanced SAR imaging technique that allows the retrieval of forest parameters while working in nearly all weather conditions, independently of daylight and cloud cover. This research concenÂŹtrates on assessing the impact of different variables affecting hemiboreal forest height estimation from space-borne X-band interferometric SAR coherence data. In particular, the research analyses the changes in coherence dynamics related to seasonal conditions, tree species and imaging properties using a large collection of interferometric SAR images from different seasons over a four-year period. The study is carried out over three test sites in Estonia using the extensive multi-temporal dataset of 23 TanDEM-X images, covering 2291 hectares of forests to describe the relation between the interferometric SAR coherence magÂŹnitude and forest parameters. The work demonstrates how the correlation of interferometric coherence and Airborne LiDAR Scanning (ALS)-derived forest height varies for pine and deciduous tree species, for summer (leaf-on) and winter (leaf-off) conditions and for flooded forest floor. A simple semi-empirical modelling approach is proposed as being suitable for wide area forest mapping with limited a priori information under a range of seasonal and environÂŹÂŹmental conditions. A Random Volume over Ground (RVoG) model and three semi-empirical models are compared and validated against a large dataset of coherence magnitude and ALS-measured data over hemiboreal forests in Estonia. The results show that all proposed models perform well in describing the relationship between hemiboreal forest height and interferometric coherence, allowing in future to derive forest stand height with an accuracy suitable for a wide range of applications

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten LandflĂ€che in der nördlichen HemisphĂ€re. Es ist ein wichtiges Element der KryosphĂ€re und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der LandoberflĂ€che und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die OberflĂ€chenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frĂŒhen 1980er Jahren gestiegen. Die durchschnittliche ErwĂ€rmung nördlich von 60° N betrĂ€gt 1-2°C. In-situ-Messungen sind essentiell fĂŒr das VerstĂ€ndnis der physischen Prozesse im PermafrostgelĂ€nde. Es gibt jedoch mehrere EinschrĂ€nkungen, die von Schwierigkeiten beim Bohren bis hin zur ReprĂ€sentativitĂ€t begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergĂ€nzen und punktuelle Beobachtungen auf einen breiteren rĂ€umlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-DatensĂ€tzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewĂ€hlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stĂ€rksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) DatensĂ€tze haben Vorteile fĂŒr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der UnabhĂ€ngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-DatensĂ€tzen fĂŒr Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die VariabilitĂ€t der Auftautiefe der aktiven Schicht ist eine direkte Indikation der VerĂ€nderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefĂŒhrt wird, eingesetzt. Die D-InSAR-Technik wurde fĂŒr Kartierung der LandoberflĂ€chendeformation ĂŒber große FlĂ€chen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die FĂ€higkeit, tau- und gefrierprozessbedingte Bodenbewegungen ĂŒber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und WertschĂ€tzung der D-InSAR-Anwendung bis heute hauptsĂ€chlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fĂŒr D-InSAR-Anwendung verursacht. Das diskontinuierliche PermafrostgelĂ€nde wurde nur weniger berĂŒcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fĂŒr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die PrĂ€senz des Permafrosts hin, wobei deren VerĂ€nderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X RĂŒckstreuungsintensitĂ€t und interferometrische KohĂ€renzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-DatensĂ€tzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten ĂŒbertragen werden. Eine vorherrschende VerĂ€nderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch VerĂ€nderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke ĂŒber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstĂ€ndig gefroren sein, was zum geerdeten Eis fĂŒhrt, wĂ€hrend die Eisdecke ĂŒber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flĂŒssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fĂŒhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flĂŒssige Wasser zusĂ€tzliche WĂ€rme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren VerstĂ€rkung des Permafrostauftauen beitrĂ€gt. Basiert auf den Charakter, dass das flĂŒssige Wasser eine bemerkenswert hohe DielektrizitĂ€tskonstante besitzt, wĂ€hrend reines Eis einen niedrigen Wert hat, wurden die SAR DatensĂ€tzen zur Erkennung des Wintereisdeckenregimes verwendet. ZunĂ€chst wurden Schemen in der rĂ€umlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die ZusammenhĂ€nge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschĂ€tzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflĂ€chen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlĂ€utern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rĂ€umliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten LandflĂ€che in der nördlichen HemisphĂ€re. Es ist ein wichtiges Element der KryosphĂ€re und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der LandoberflĂ€che und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die OberflĂ€chenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frĂŒhen 1980er Jahren gestiegen. Die durchschnittliche ErwĂ€rmung nördlich von 60° N betrĂ€gt 1-2°C. In-situ-Messungen sind essentiell fĂŒr das VerstĂ€ndnis der physischen Prozesse im PermafrostgelĂ€nde. Es gibt jedoch mehrere EinschrĂ€nkungen, die von Schwierigkeiten beim Bohren bis hin zur ReprĂ€sentativitĂ€t begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergĂ€nzen und punktuelle Beobachtungen auf einen breiteren rĂ€umlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-DatensĂ€tzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewĂ€hlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stĂ€rksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) DatensĂ€tze haben Vorteile fĂŒr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der UnabhĂ€ngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-DatensĂ€tzen fĂŒr Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die VariabilitĂ€t der Auftautiefe der aktiven Schicht ist eine direkte Indikation der VerĂ€nderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefĂŒhrt wird, eingesetzt. Die D-InSAR-Technik wurde fĂŒr Kartierung der LandoberflĂ€chendeformation ĂŒber große FlĂ€chen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die FĂ€higkeit, tau- und gefrierprozessbedingte Bodenbewegungen ĂŒber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und WertschĂ€tzung der D-InSAR-Anwendung bis heute hauptsĂ€chlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fĂŒr D-InSAR-Anwendung verursacht. Das diskontinuierliche PermafrostgelĂ€nde wurde nur weniger berĂŒcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fĂŒr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die PrĂ€senz des Permafrosts hin, wobei deren VerĂ€nderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X RĂŒckstreuungsintensitĂ€t und interferometrische KohĂ€renzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-DatensĂ€tzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten ĂŒbertragen werden. Eine vorherrschende VerĂ€nderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch VerĂ€nderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke ĂŒber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstĂ€ndig gefroren sein, was zum geerdeten Eis fĂŒhrt, wĂ€hrend die Eisdecke ĂŒber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flĂŒssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fĂŒhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flĂŒssige Wasser zusĂ€tzliche WĂ€rme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren VerstĂ€rkung des Permafrostauftauen beitrĂ€gt. Basiert auf den Charakter, dass das flĂŒssige Wasser eine bemerkenswert hohe DielektrizitĂ€tskonstante besitzt, wĂ€hrend reines Eis einen niedrigen Wert hat, wurden die SAR DatensĂ€tzen zur Erkennung des Wintereisdeckenregimes verwendet. ZunĂ€chst wurden Schemen in der rĂ€umlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die ZusammenhĂ€nge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschĂ€tzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflĂ€chen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlĂ€utern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rĂ€umliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Comparing synthetic aperture radar and LiDAR for above-ground biomass estimation in Glen Affric, Scotland

    Get PDF
    Quantifying above-ground biomass (AGB) and carbon sequestration has been a significant focus of attention within the UNFCCC and Kyoto Protocol for improvement of national carbon accounting systems (IPCC, 2007; UNFCCC, 2011). A multitude of research has been carried out in relatively flat and homogeneous forests (Ranson & Sun, 1994; Beaudoin et al.,1994; Kurvonen et al., 1999; Austin et al., 2003; Dimitris et al., 2005), yet forests in the highlands, which generally form heterogeneous forest cover and sparse woodlands with mountainous terrain have been largely neglected in AGB studies (Cloude et al., 2001; 2008; Lumsdon et al., 2005; 2008; Erxue et al., 2009, Tan et al., 2010; 2011a; 2011b; 2011c; 2011d). Since mountain forests constitute approximately 28% of the total global forest area (Price and Butt, 2000), a better understanding of the slope effects is of primary importance in AGB estimation. The main objective of this research is to estimate AGB in the aforementioned forest in Glen Affric, Scotland using both SAR and LiDAR data. Two types of Synthetic Aperture Radar (SAR) data were used in this research: TerraSAR-X, operating at X-band and ALOS PALSAR, operating at L-band, both are fully polarimetric. The former data was acquired on 13 April 2010 and of the latter, two scenes were acquired on 17 April 2007 and 08 June 2009. Airborne LiDAR data were acquired on 09 June 2007. Two field measurement campaigns were carried out, one of which was done from winter 2006 to spring 2007 where physical parameters of trees in 170 circular plots were measured by the Forestry Commission team. Another intensive fieldwork was organised by myself with the help of my fellow colleagues and it comprised of tree measurement in two transects of 200m x 50m at a relatively flat and dense plantation forest and 400m x 50m at hilly and sparse semi-natural forest. AGB is estimated for both the transects to investigate the effectiveness of the proposed method at plot-level. This thesis evaluates the capability of polarimetric Synthetic Aperture Radar data for AGB estimation by investigating the relationship between the SAR backscattering coefficient and AGB and also the relationship between the decomposed scattering mechanisms and AGB. Due to the terrain and heterogeneous nature of the forests, the result from the backscatter-AGB analysis show that these forests present a challenge for simple AGB estimation. As an alternative, polarimetric techniques were applied to the problem by decomposing the backscattering information into scattering mechanisms based on the approach by Yamaguchi (2005; 2006), which are then regressed to the field measured AGB. Of the two data sets, ALOS PALSAR demonstrates a better estimation capacity for AGB estimation than TerraSAR-X. The AGB estimated results from SAR data are compared with AGB derived from LiDAR data. Since tree height is often correlated with AGB (Onge et al., 2008; Gang et al., 2010), the effectiveness of the tree height retrieval from LiDAR is evaluated as an indicator of AGB. Tree delineation was performed before AGB of individual trees were calculated allometrically. Results were validated by comparison to the fieldwork data. The amount of overestimation varies across the different canopy conditions. These results give some indication of when to use LiDAR or SAR to retrieve forest AGB. LiDAR is able to estimate AGB with good accuracy and the R2 value obtained is 0.97 with RMSE of 14.81 ton/ha. The R2 and RMSE obtained for TerraSAR-X are 0.41 and 28.5 ton/ha, respectively while for ALOS PALSAR data are 0.70 and 23.6 ton/ha, respectively. While airborne LiDAR data with very accurate height measurement and consequent three-dimensional (3D) stand profiles which allows investigation into the relationship between height, number density and AGB, it's limited to small coverage area, or large areas but at large cost. ALOS PALSAR, on the other hand, can cover big coverage area but it provide a lower resolution, hence, lower estimation accuracy

    Puistute takseertunnuste hindamine aerolidari mÔÔtmisandmete pÔhjal hemiboreaalsetes metsades

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in Forestry.Forest management and planning requires up-to-date data, which commonly is acquired using field experts and ground measurements. Nowadays, more and more of data about forest stands is measured using remotely sensing methods. Most common methods include aerial photography and laser scanning from airplanes, also spectral measurements from satellites or even drone images and applications. This doctoral thesis focuses on developing applications and methods for utilising the airborne laser scanning (ALS) data that is freely available for the whole Estonia. The ALS measurements are carried out by the Estonian Land Board on a routine basis twice a year – in spring and summer. The first variable that was studied in this thesis was forest height. Based on the thesis, the most reliable method for forest height assessment was using the ALS point-cloud 80th height percentile (HP80). The small circular plot (radius of 15
30 m) and stand based studies showed high correlations with the field-measured forest heights and with great confidence it can be said, that ALS-based forest height estimations are close or even with higher accuracy, than field inspected. The second studied variable was standing wood volume. The ALS-based methods and models that were developed throughout this thesis used the idea, that standing wood volume is based on forest height and density. For this the HP80 and a threshold-based point count ratio was used (canopy cover - CC). ALS-based CC (CCALS) estimates were studied and compared with digital hemispherical photo based measurements. The results showed similar errors as were shown in other similar studies, with around 10-15% root mean square error (RMSE). The strongest correlation was shown using all echoes above a 1.3 metre threshold. Combining the CCALS and HP80 showed standing wood volume estimates with a similar error as we would receive from field measurements (<20%). The freely available multitemporal ALS data showed promising results for forest height growth monitoring and detecting small-scale disturbances. CCALS was shown to have strong predictive value, when compared with a four year difference in thinned and unthinned stands. The nation-wide ALS data can also be combined with forest height predictions from satellites, providing a faster update compared to the ALS data. Promising results were shown using the interferometric synthetic aperture radar (InSAR). Stand species maps generated using self-learning algorithms and satellite based spectral data can be used for developing species specific models of standing wood volume prediction. By combining these different datasets we can construct a nation-wide forest resource to help make better decisions for forest management and targeting fieldwork.Metsades majandamisotsuste langetamiseks ja metsamajanduslike tööde planeerimiseks on metsaomanikel vaja andmeid. HarjumuspĂ€raselt on andmete kogumiseks tehtud metsas maapealseid mÔÔtmisi. Viimastel aastakĂŒmnetel on metsade inventeerimiseks ĂŒha enam aga kasutatud mittekontaktseid mÔÔtmisi - lennukitelt tehtavad aerofotosid, laserskaneerimist, satelliitidelt tehtavaid kiirgusmÔÔtmisi vĂ”i viimastel aastatel ka droonidelt tehtud pilte. Antud doktoritöö on vĂ”tnud fookusesse aerolaserskaneerimise (ALS) andmete pĂ”hjal Eesti metsadesse sobilike rakenduste vĂ€ljatöötamise. ALS mÔÔtmisi teeb Eesti Maa-amet rutiinsete lendude kĂ€igus kaks korda aastas, nii kevadel kui ka suvel. Aastast 2008 alustatud mÔÔtmiste tulemusel on Eesti ĂŒks vĂ€heseid riike maailmas, kus on vabalt kasutada mitmekordselt kogu riiki kattev ALS andmestik. Doktoritöö tulemusel töötati vĂ€lja metsa kĂ”rguse hindamiseks sobilikud meetodid, kasutades selleks punktipilvede kĂ”rgusprotsentiile. Tugevamaid seoseid metsas proovitĂŒkkidel mÔÔdetud kĂ”rgustega nĂ€itas punktipilve 80-protsentiil (HP80) ja uuringute pĂ”hjal vĂ”ib vĂ€ita, et metsa kĂ”rguse mÀÀramine suvistelt aerolidari andmetelt on ligilĂ€hedane tĂ€psustele, mida saadakse metsas kohapeal mÔÔtes. Teine oluline tunnus, mida metsade majandamise planeerimisel silmas peetakse, on kasvava metsa tagavara. Teadustöö pĂ”hjal töötati vĂ€lja mudelite kujud ja metoodika, mille abil prognoositud tagavara oli sarnase veapiiriga, mis on lubatud metsas hinnanguid tegevatele taksaatoritele (<20%). VĂ€ljatöötatud ALS-pĂ”hine mudeli kuju jĂ€rgib loogikat, et metsa tagavara on otseselt seotud mÔÔdetud kĂ”rguse ja metsa tihedusega. Tihenduse hindamiseks aerolidari andmetelt kasutatakse nivoopĂ”hist punktide suhtearvu ehk nn katvushinnangut (CCALS). Katvushinnangu tĂ€psuse valideerimiseks ja tihedas metsas sobiva prognoosimeetodi vĂ€ljatöötamiseks tehti vĂ€limÔÔtmisi kasutades poolsfÀÀrikaameraid. PoolsfÀÀripiltide pĂ”hjal tehtud valideerimise tulemused andsid sarnaseid veahinnanguid, mida on ka varasemates teadusuuringutes esitletud (RMSE = 10
15%). Kahe sarnasest fenoloogilisest perioodist ALS andmestiku lahutamisel uuriti ka muutuste tuvastamise vĂ”imalikkust. Uuringud andsid paljulubavaid tulemusi metsade kĂ”rguskasvu hindamiseks ja CCALS osutus ka oluliseks tunnuseks vĂ€iksemate hĂ€iringute, nagu nĂ€iteks harvendusraie, tuvastamiseks. Kogu riiki katva ALS andmestiku kombineerimisel erinevate satelliitandmetega vĂ”i nĂ€iteks spektraalsete mÔÔtmiste pĂ”hjal tehtud puistu liigiliste koosseisu kaartidega on vĂ”imalik antud töös vĂ€lja pakutud meetodite abil anda igal aastal kogu Eesti metsaressursside ĂŒlevaade. Samuti on vĂ”imalik koostada vaid kaugseirevahendeid ja proovitĂŒkkidel lĂ€hendatud mudeleid kasutades eraldiste pĂ”hised takseerkirjeldused, mida siis taksaatorid saavad nĂ€iteks kasutada oma vĂ€litööde kavandamisel.  Publication of this thesis is supported by the Estonian University of Life Sciences

    Relationship between Lidar-Derived Canopy Densities and the Scattering Phase Center of High-Resolution TanDEM-X Data

    Get PDF
    Abstract: The estimation of forestry parameters is essential to understanding the three-dimensional structure of forests. In this respect, the potential of X-band synthetic aperture radar (SAR) has been recognized for years. Many studies have been conducted on deriving tree heights with SAR data, but few have paid attention to the effects of the canopy structure. Canopy density plays an important role since it provides information about the vertical distribution of dominant scatterers in the forest. In this study, the position of the scattering phase center (SPC) of interferometric X-band SAR data is investigated with regard to the densest vegetation layer in a deciduous and coniferous forest in Germany by applying a canopy density index from high-resolution airborne laser scanning data. Two different methods defining the densest layer are introduced and compared with the position of the TanDEM-X SPC. The results indicate that the position of the SPC often coincides with the densest layer, with mean differences ranging from −1.6 m to +0.7 m in the deciduous forest and +1.9 m in the coniferous forest. Regarding relative tree heights, the SAR signal on average penetrates up to 15% (3.4 m) of the average tree height in the coniferous forest. In the deciduous forest, the difference increases to 18% (6.2 m) during summer and 24% (8.2 m) during winter. These findings highlight the importance of considering not only tree height but also canopy density when delineating SAR-based forest heights. The vertical structure of the canopy influences the position of the SPC, and incorporating canopy density can improve the accuracy of SAR-derived forest height estimations

    Detection of forest windthrows with bitemporal COSMO-SkyMed and Sentinel-1 SAR data

    Get PDF
    Wind represents a primary source of disturbances in forests, necessitating an assessment of the resulting damage to ensure appropriate forest management. Remote sensing, encompassing both active and passive techniques, offers a valuable and efficient approach for this purpose, enabling coverage of large areas while being costeffective. Passive remote sensing data could be affected by the presence of clouds, unlike active systems such as Synthetic Aperture Radar (SAR) which are relatively less affected. Therefore, this study aims to explore the utilization of bitemporal SAR data for windthrow detection in mountainous regions. Specifically, we investigated how the detection outcomes vary based on three factors: i) the SAR wavelength (X-band or C-band), ii) the acquisition period of the pre- and post-event images (summer, autumn, or winter), and iii) the forest type (evergreen vs. deciduous). Our analysis considers two SAR satellite constellations: COSMO-SkyMed (band-X, with a pixel spacing of 2.5 m and 10 m) and Sentinel-1 (band-C, with a pixel spacing of 10 m). We focused on three study sites located in the Trentino-South Tyrol region of Italy, which experienced significant forest damage during the Vaia storm from 27th to 30th October 2018. To accomplish our objectives, we employed a detailpreserving, scale-driven approach for change detection in bitemporal SAR data. The results demonstrate that: i) the algorithm exhibits notably better performance when utilizing X-band data, achieving a highest kappa accuracy of 0.473 and a balanced accuracy of 76.1%; ii) the pixel spacing has an influence on the accuracy, with COSMO-SkyMed data achieving kappa values of 0.473 and 0.394 at pixel spacings of 2.5 m and 10 m, respectively; iii) the post-event image acquisition season significantly affects the algorithm’s performance, with summer imagery yielding superior results compared to winter imagery; and iv) the forest type (evergreen vs. deciduous) has a noticeable impact on the results, particularly when considering autumn/winter dat
    • 

    corecore