1,120 research outputs found

    A Partitioning Algorithm for Maximum Common Subgraph Problems

    Get PDF
    We introduce a new branch and bound algorithm for the maximum common subgraph and maximum common connected subgraph problems which is based around vertex labelling and partitioning. Our method in some ways resembles a traditional constraint programming approach, but uses a novel compact domain store and supporting inference algorithms which dramatically reduce the memory and computation requirements during search, and allow better dual viewpoint ordering heuristics to be calculated cheaply. Experiments show a speedup of more than an order of magnitude over the state of the art, and demonstrate that we can operate on much larger graphs without running out of memory

    Some hard families of parameterised counting problems

    Get PDF
    We consider parameterised subgraph-counting problems of the following form: given a graph G, how many k-tuples of its vertices have a given property? A number of such problems are known to be #W[1]-complete; here we substantially generalise some of these existing results by proving hardness for two large families of such problems. We demonstrate that it is #W[1]-hard to count the number of k-vertex subgraphs having any property where the number of distinct edge-densities of labelled subgraphs that satisfy the property is o(k^2). In the special case that the property in question depends only on the number of edges in the subgraph, we give a strengthening of this result which leads to our second family of hard problems.Comment: A few more minor changes. This version to appear in the ACM Transactions on Computation Theor

    Minimal classes of graphs of unbounded clique-width defined by finitely many forbidden induced subgraphs

    Full text link
    We discover new hereditary classes of graphs that are minimal (with respect to set inclusion) of unbounded clique-width. The new examples include split permutation graphs and bichain graphs. Each of these classes is characterised by a finite list of minimal forbidden induced subgraphs. These, therefore, disprove a conjecture due to Daligault, Rao and Thomasse from 2010 claiming that all such minimal classes must be defined by infinitely many forbidden induced subgraphs. In the same paper, Daligault, Rao and Thomasse make another conjecture that every hereditary class of unbounded clique-width must contain a labelled infinite antichain. We show that the two example classes we consider here satisfy this conjecture. Indeed, they each contain a canonical labelled infinite antichain, which leads us to propose a stronger conjecture: that every hereditary class of graphs that is minimal of unbounded clique-width contains a canonical labelled infinite antichain.Comment: 17 pages, 7 figure

    The parameterised complexity of counting connected subgraphs and graph motifs

    Get PDF
    We introduce a family of parameterised counting problems on graphs, p-#Induced Subgraph With Property(Φ), which generalises a number of problems which have previously been studied. This paper focuses on the case in which Φ defines a family of graphs whose edge-minimal elements all have bounded treewidth; this includes the special case in which Φ describes the property of being connected. We show that exactly counting the number of connected induced k-vertex subgraphs in an n-vertex graph is #W[1]-hard, but on the other hand there exists an FPTRAS for the problem; more generally, we show that there exists an FPTRAS for p-#Induced Subgraph With Property(Φ) whenever Φ is monotone and all the minimal graphs satisfying Φ have bounded treewidth. We then apply these results to a counting version of the Graph Motif problem
    • …
    corecore