7,491 research outputs found

    Data mining based cyber-attack detection

    Get PDF

    A NEW ANOMALOUS TEXT DETECTION APPROACH USING UNSUPERVISED METHODS

    Get PDF
    Increasing size of text data in databases requires appropriate classification and analysis in order to acquire knowledge and improve the quality of decision-making in organizations. The process of discovering the hidden patterns in the data set, called data mining, requires access to quality data in order to receive a valid response from the system. Detecting and removing anomalous data is one of the pre-processing steps and cleaning data in this process. Methods for anomalous data detection are generally classified into three groups including supervised, semi-supervised, and unsupervised. This research tried to offer an unsupervised approach for spotting the anomalous data in text collections. In the proposed method, a combination of two approaches (i.e., clustering-based and distance-based) is used for detecting anomaly in the text data. In order to evaluate the efficiency of the proposed approach, this method is applied on four labeled data sets. The accuracy of Na¨ıve Bayes classification algorithms and decision tree are compared before and after removal of anomalous data with the proposed method and some other methods such as Density-based spatial clustering of applications with noise (DBSCAN). Our proposed method shows that accuracy of more than 92.39% can be achieved. In general, the results revealed that in most cases the proposed method has a good performance

    Towards Intelligent Crowd Behavior Understanding through the STFD Descriptor Exploration

    Get PDF
    Realizing the automated and online detection of crowd anomalies from surveillance CCTVs is a research-intensive and application-demanding task. This research proposes a novel technique for detecting crowd abnormalities through analyzing the spatial and temporal features of input video signals. This integrated solution defines an image descriptor (named spatio-temporal feature descriptor - STFD) that reflects the global motion information of crowds over time. A CNN has then been adopted to classify dominant or large-scale crowd abnormal behaviors. The work reported has focused on: 1) detecting moving objects in online (or near real-time) manner through spatio-temporal segmentations of crowds that is defined by the similarity of group trajectory structures in temporal space and the foreground blocks based on Gaussian Mixture Model (GMM) in spatial space; 2) dividing multiple clustered groups based on the spectral clustering method by considering image pixels from spatio-temporal segmentation regions as dynamic particles; 3) generating the STFD descriptor instances by calculating the attributes (i.e., collectiveness, stability, conflict and crowd density) of particles in the corresponding groups; 4) inputting generated STFD descriptor instances into the devised convolutional neural network (CNN) to detect suspicious crowd behaviors. The test and evaluation of the devised models and techniques have selected the PETS database as the primary experimental data sets. Results against benchmarking models and systems have shown promising advancements of this novel approach in terms of accuracy and efficiency for detecting crowd anomalies

    Towards Intelligent Crowd Behavior Understanding through the STFD Descriptor Exploration

    Get PDF
    Realizing the automated and online detection of crowd anomalies from surveillance CCTVs is a research-intensive and application-demanding task. This research proposes a novel technique for detecting crowd abnormalities through analyzing the spatial and temporal features of input video signals. This integrated solution defines an image descriptor (named spatio-temporal feature descriptor - STFD) that reflects the global motion information of crowds over time. A CNN has then been adopted to classify dominant or large-scale crowd abnormal behaviors. The work reported has focused on: 1) detecting moving objects in online (or near real-time) manner through spatio-temporal segmentations of crowds that is defined by the similarity of group trajectory structures in temporal space and the foreground blocks based on Gaussian Mixture Model (GMM) in spatial space; 2) dividing multiple clustered groups based on the spectral clustering method by considering image pixels from spatio-temporal segmentation regions as dynamic particles; 3) generating the STFD descriptor instances by calculating the attributes (i.e., collectiveness, stability, conflict and crowd density) of particles in the corresponding groups; 4) inputting generated STFD descriptor instances into the devised convolutional neural network (CNN) to detect suspicious crowd behaviors. The test and evaluation of the devised models and techniques have selected the PETS database as the primary experimental data sets. Results against benchmarking models and systems have shown promising advancements of this novel approach in terms of accuracy and efficiency for detecting crowd anomalies

    Data Improving in Time Series Using ARX and ANN Models

    Get PDF
    Anomalous data can negatively impact energy forecasting by causing model parameters to be incorrectly estimated. This paper presents two approaches for the detection and imputation of anomalies in time series data. Autoregressive with exogenous inputs (ARX) and artificial neural network (ANN) models are used to extract the characteristics of time series. Anomalies are detected by performing hypothesis testing on the extrema of the residuals, and the anomalous data points are imputed using the ARX and ANN models. Because the anomalies affect the model coefficients, the data cleaning process is performed iteratively. The models are re-learned on “cleaner” data after an anomaly is imputed. The anomalous data are reimputed to each iteration using the updated ARX and ANN models. The ARX and ANN data cleaning models are evaluated on natural gas time series data. This paper demonstrates that the proposed approaches are able to identify and impute anomalous data points. Forecasting models learned on the unclean data and the cleaned data are tested on an uncleaned out-of-sample dataset. The forecasting model learned on the cleaned data outperforms the model learned on the unclean data with 1.67% improvement in the mean absolute percentage errors and a 32.8% improvement in the root mean squared error. Existing challenges include correctly identifying specific types of anomalies such as negative flows

    Activity Recognition based on a Magnitude-Orientation Stream Network

    Full text link
    The temporal component of videos provides an important clue for activity recognition, as a number of activities can be reliably recognized based on the motion information. In view of that, this work proposes a novel temporal stream for two-stream convolutional networks based on images computed from the optical flow magnitude and orientation, named Magnitude-Orientation Stream (MOS), to learn the motion in a better and richer manner. Our method applies simple nonlinear transformations on the vertical and horizontal components of the optical flow to generate input images for the temporal stream. Experimental results, carried on two well-known datasets (HMDB51 and UCF101), demonstrate that using our proposed temporal stream as input to existing neural network architectures can improve their performance for activity recognition. Results demonstrate that our temporal stream provides complementary information able to improve the classical two-stream methods, indicating the suitability of our approach to be used as a temporal video representation.Comment: 8 pages, SIBGRAPI 201
    corecore