2,049 research outputs found

    Bolt Detection Signal Analysis Method Based on ICEEMD

    Full text link
    The construction quality of the bolt is directly related to the safety of the project, and as such, it must be tested. In this paper, the improved complete ensemble empirical mode decomposition (ICEEMD) method is introduced to the bolt detection signal analysis. The ICEEMD is used in order to decompose the anchor detection signal according to the approximate entropy of each intrinsic mode function (IMF). The noise of the IMFs is eliminated by the wavelet soft threshold de-noising technique. Based on the approximate entropy, and the wavelet de-noising principle, the ICEEMD-De anchor signal analysis method is proposed. From the analysis of the vibration analog signal, as well as the bolt detection signal, the result shows that the ICEEMD-De method is capable of correctly separating the different IMFs under noisy conditions, and also that the IMF can effectively identify the reflection signal of the end of the bolt

    Seismic Ray Impedance Inversion

    Get PDF
    This thesis investigates a prestack seismic inversion scheme implemented in the ray parameter domain. Conventionally, most prestack seismic inversion methods are performed in the incidence angle domain. However, inversion using the concept of ray impedance, as it honours ray path variation following the elastic parameter variation according to Snell’s law, shows the capacity to discriminate different lithologies if compared to conventional elastic impedance inversion. The procedure starts with data transformation into the ray-parameter domain and then implements the ray impedance inversion along constant ray-parameter profiles. With different constant-ray-parameter profiles, mixed-phase wavelets are initially estimated based on the high-order statistics of the data and further refined after a proper well-to-seismic tie. With the estimated wavelets ready, a Cauchy inversion method is used to invert for seismic reflectivity sequences, aiming at recovering seismic reflectivity sequences for blocky impedance inversion. The impedance inversion from reflectivity sequences adopts a standard generalised linear inversion scheme, whose results are utilised to identify rock properties and facilitate quantitative interpretation. It has also been demonstrated that we can further invert elastic parameters from ray impedance values, without eliminating an extra density term or introducing a Gardner’s relation to absorb this term. Ray impedance inversion is extended to P-S converted waves by introducing the definition of converted-wave ray impedance. This quantity shows some advantages in connecting prestack converted wave data with well logs, if compared with the shearwave elastic impedance derived from the Aki and Richards approximation to the Zoeppritz equations. An analysis of P-P and P-S wave data under the framework of ray impedance is conducted through a real multicomponent dataset, which can reduce the uncertainty in lithology identification.Inversion is the key method in generating those examples throughout the entire thesis as we believe it can render robust solutions to geophysical problems. Apart from the reflectivity sequence, ray impedance and elastic parameter inversion mentioned above, inversion methods are also adopted in transforming the prestack data from the offset domain to the ray-parameter domain, mixed-phase wavelet estimation, as well as the registration of P-P and P-S waves for the joint analysis. The ray impedance inversion methods are successfully applied to different types of datasets. In each individual step to achieving the ray impedance inversion, advantages, disadvantages as well as limitations of the algorithms adopted are detailed. As a conclusion, the ray impedance related analyses demonstrated in this thesis are highly competent compared with the classical elastic impedance methods and the author would like to recommend it for a wider application

    Blind Curvelet based Denoising of Seismic Surveys in Coherent and Incoherent Noise Environments

    Full text link
    The localized nature of curvelet functions, together with their frequency and dip characteristics, makes the curvelet transform an excellent choice for processing seismic data. In this work, a denoising method is proposed based on a combination of the curvelet transform and a whitening filter along with procedure for noise variance estimation. The whitening filter is added to get the best performance of the curvelet transform under coherent and incoherent correlated noise cases, and furthermore, it simplifies the noise estimation method and makes it easy to use the standard threshold methodology without digging into the curvelet domain. The proposed method is tested on pseudo-synthetic data by adding noise to real noise-less data set of the Netherlands offshore F3 block and on the field data set from east Texas, USA, containing ground roll noise. Our experimental results show that the proposed algorithm can achieve the best results under all types of noises (incoherent or uncorrelated or random, and coherent noise)

    The estimation of geoacoustic properties from broadband acoustic data, focusing on instantaneous frequency techniques

    Get PDF
    The compressional wave velocity and attenuation of marine sediments are fundamental to marine science. In order to obtain reliable estimates of these parameters it is necessary to examine in situ acoustic data, which is generally broadband. A variety of techniques for estimating the compressional wave velocity and attenuation from broadband acoustic data are reviewed. The application of Instantaneous Frequency (IF) techniques to data collected from a normal-incidence chirp profiler is examined. For the datasets examined the best estimates of IF are obtained by dividing the chirp profile into a series of sections, estimating the IF of each trace in the section using the first moments of the Wigner Ville distribution, and stacking the resulting IF to obtain a composite IF for the section. As the datasets examined cover both gassy and saturated sediments, this is likely to be the optimum technique for chirp datasets collected from all sediment environments

    A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal

    Get PDF
    Unveiling meaningful geophysical information from seismic data requires to deal with both random and structured "noises". As their amplitude may be greater than signals of interest (primaries), additional prior information is especially important in performing efficient signal separation. We address here the problem of multiple reflections, caused by wave-field bouncing between layers. Since only approximate models of these phenomena are available, we propose a flexible framework for time-varying adaptive filtering of seismic signals, using sparse representations, based on inaccurate templates. We recast the joint estimation of adaptive filters and primaries in a new convex variational formulation. This approach allows us to incorporate plausible knowledge about noise statistics, data sparsity and slow filter variation in parsimony-promoting wavelet frames. The designed primal-dual algorithm solves a constrained minimization problem that alleviates standard regularization issues in finding hyperparameters. The approach demonstrates significantly good performance in low signal-to-noise ratio conditions, both for simulated and real field seismic data

    Application of Local Wave Decomposition in Seismic Signal Processing

    Get PDF
    Local wave decomposition (LWD) method plays an important role in seismic signal processing for its superiority in significantly revealing the frequency content of a seismic signal changes with time variation. The LWD method is an effective way to decompose a seismic signal into several individual components. Each component represents a harmonic signal localized in time, with slowly varying amplitudes and frequencies, potentially highlighting different geologic and stratigraphic information. Empirical mode decomposition (EMD), the synchrosqueezing transform (SST), and variational mode decomposition (VMD) are three typical LWD methods. We mainly study the application of the LWD method especially EMD, SST, and VMD in seismic signal processing including seismic signal de‐noising, edge detection of seismic images, and recovery of the target reflection near coal seams

    INVERSE ATTENUATION-FILTERING

    Get PDF
    When seismic waves propagate through the Earth, they are affected by numerous inelastic effects of the medium. These effects are usually characterized by the concept of the Q-factor and lead to variations of spectra of the signal and shapes of the waveforms, which further affect the results of reflection seismic imaging. Attenuation compensation, also often called the inverse Q filtering is a signal-processing procedure broadly used to compensate both of these effects of attenuation in reflection sections or volumes. The objective of this thesis is to present and investigate a new attenuation-compensation approach that is much more general than the conventional inverse Q filtering

    Improved Gabor Deconvolution and Its Extended Applications

    Get PDF

    A SEISMOLOGIC STUDY OF THE NORTHERN MISSISSIPPI EMBAYMENT

    Get PDF
    Part 1: Crustal structure in the New Madrid Seismic Zone (NMSZ) is investigated through a detailed study of explosion data obtained from the Embayment Seismic Excitation Experiment. The data show a distinct anisotropy in distance attenuation for both P and S waves in the range from 0 to 200km distance. Waves that propagate northward from the 1,134kg Marked Tree, Arkansas, explosion attenuate quickly with distance until a range of about 100km from the source where high-amplitude, high-phase velocity critical reflections from the boundary between the middle crust and rift pillow structure produce high amplitude waves. Propagation southward from the 2,268kg Mooring, Tennessee blast shows less distance attenuation compared to northward propagation. Reflections from the middle crust-lower crust boundary occur but do not significantly increase in amplitude with distance and travel with slower apparent phase velocity than observed for the northward propagation data set. A smooth velocity model is developed using a stabilized Weichert-Herglotz travel time inversion using first arrival travel times. Then an inversion using the travel time of both direct and middle crustal reflected waves is developed to obtain a 2D inhomogeneous-layered isotropic crustal model. The result reveals that there is a significant southwest dip to the top of the middle crust interface in the vicinity of the NMSZ, consistent with previously inferred changes in the thickness of the rift pillow model. This 2D feature characterizes the local wave propagation along the Reelfoot Rift and demonstrates the need for an improvement of the current Central United States velocity model.Part 2: Obtaining reliable empirical Greens functions (EGFs) from ambient noise by seismic interferometry requires homogenously distributed noise sources. However, it is difficult to attain this condition since ambient noise data usually contains highly correlated signals from earthquakes or other transient sources from human activities. Removing these transient signals is one of the most essential steps in the whole data processing flow to obtain EGFs. We propose to use a denoising method based on the continuous wavelet transform to achieve this goal. The noise level is estimated in the wavelet domain for each scale by determing the 99% confidence level of the empirical probability density function of the noise wavelet coefficients. The correlated signals are then removed by an efficient soft thresholding method. The same denoising algorithm is also applied to remove the noise in the final stacked cross-correlogram. A complete data processing workflow is provided with the overall data processing procedure divided into four stages: (1) single station data preparation, (2) removal of earthquakes and other transient signals in the seismic record, (3) spectrum whitening, cross-correlation and temporal stacking, and (4) remove the noise in the stacked cross-correlogram to deliver the final EGF. The whole process is automated to make it accessible for large datasets. Synthetic data constructed with a recorded earthquake and recorded ambient noise is used to test the denoising method. We then apply the new processing workflow to data recorded by the USArray Transportable Array stations near the New Madrid Seismic Zone where many seismic events and transient signals are observed. We compare the EGFs calculated from our workflow with commonly used time domain normalization method and our results show improved signal-to-noise ratios. The new workflow can deliever reliable EGFs for further studies.Part 3: We incorporate seismic ambient noise data recorded by different temporary and permanent broadband stations around the northern Mississippi Embayment from 1990 to 2018 to develop a crustal shear wave velocity (Vs) model for this area with full waveform ambient noise tomography. Empirical Greens functions at periods between 8 and 40s for all the possible pairs of stations are extracted by using a new seismic ambient noise data processing flow based on the continuous wavelet transform. Synthetic waveforms are then calculated through a heterogeneous Earth model using a GPU-enabled collocated finite-difference code. The cross-correlation time shifts between the synthetic waveforms and the extracted empirical Greens functions are used to construct the velocity updated kernel by using the adjoint method. Starting from the Central United States Velocity Model, the shear wave velocity model is then iteratively updated with the Vs kernel calculated in each iteration. Checkerboard tests show that perturbations in the top 30km of the crust are well recovered but amplitude recovery ability gradually decreases for deeper structure. We find that velocity lows characterize the Reelfoot Rift Graben and Rough Creek Graben separated by a high velocity crust. High velocity anomalies are observed under the Ozark Uplift and Paducah Gravity Lineament. A low velocity area previously interpreted as the Missouri Batholith is observed between them. A massive high velocity body in the southeast Mississippi Embayment is observed and is explained by the faulting as well as partly mafic intrusion. The Ouachita-Appalachian Thrust Front is clearly observed with a thinner crustal layer underneath. The rift pillow is well observed in the final tomography model along the Reelfoot Rift in the lower crust. The final inverted velocity model is consistent with local geological features and can be used for other seismological studies such as earthquake source determination and earthquake hazard assessment

    Seismic reverse-time migration in viscoelastic media

    Get PDF
    Seismic images are key to exploration seismology. They help identify structures in the subsurface and locate potential reservoirs. However, seismic images suffer from the problem of low resolution caused by the viscoelasticity of the medium. The viscoelasticity of the media is caused by the combination of fractured solid rock and fluids, such as water, oil and gas. This viscoelasticity of the medium causes attenuation of seismic waves, which includes energy absorption and velocity dispersion. These two attenuation effects significantly change the seismic data, and thus the seismic imaging. The aim of this thesis is to deepen the understanding of seismic wave propagation in attenuating media and to further investigate the method for high-resolution seismic imaging. My work, presented in this dissertation, comprises the following three parts. First, the determination of the viscoelastic parameters in the generalised viscoelastic wave equation. The viscoelasticity of subsurface media is succinctly represented in the generalised wave equation by a fractional temporal derivative. This generalised viscoelastic wave equation is characterised by the viscoelastic parameter and the viscoelastic velocity, but these parameters are not well formulated and therefore unfavourable for seismic implementation. The causality and stability of the generalised wave equation are proved by deriving the rate-of-relaxation function. On this basis, the viscoelastic parameter is formulated based on the constant Q model, and the viscoelastic velocity is formulated in terms of the reference velocity and the viscoelastic parameter. These two formulations adequately represent the viscoelastic effect in seismic wave propagation. Second, the development of a fractional spatial derivatives wave equation with a spatial filter. This development aims to effectively and efficiently solve the generalised viscoelastic wave equation with fractional temporal derivative, which is numerically challenging. I have transferred the fractional temporal derivative into fractional spatial derivatives, which can be solved using the pseudo-spectral implementation. However, this method is inaccurate in heterogeneous media. I introduced a spatial filter to correct the simulation error caused by the averaging in this implementation. The numerical test shows that the proposed spatial filter can significantly improve the accuracy of the seismic simulation and maintain high efficiency. Moreover, the proposed wave equation with fractional spatial derivatives is applied to compensate for the attenuation effects in reverse-time migration. This allows the dispersion correction and energy compensation to be performed simultaneously, which improves the resolution of the migration results. Finally, the development of reverse-time migration using biaxial wavefield decomposition to reduce migration artefacts and further improve the resolution of seismic images. In reverse-time migration, the cross-correlation of unphysical waves leads to large artefacts. By decomposing the wavefield both horizontally and vertically, and selecting only the causal waves for cross-correlation, the artefacts are greatly reduced, and the delicate structures can be identified. This decomposition method is also suitable for reverse-time migration with attenuation compensation. The migration results show that the resolution of the final seismic image is significantly improved, compared to conventional reverse-time migration.Open Acces
    • 

    corecore