4,671 research outputs found

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Genetic programming in data mining for drug discovery

    Get PDF
    Genetic programming (GP) is used to extract from rat oral bioavailability (OB) measurements simple, interpretable and predictive QSAR models which both generalise to rats and to marketed drugs in humans. Receiver Operating Characteristics (ROC) curves for the binary classier produced by machine learning show no statistical dierence between rats (albeit without known clearance dierences) and man. Thus evolutionary computing oers the prospect of in silico ADME screening, e.g. for \virtual" chemicals, for pharmaceutical drug discovery

    Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort.

    Get PDF
    Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the "hero" model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan. [Abstract copyright: © 2022 The Authors.

    DATA MINING METHODOLOGY FOR DETERMINING THE OPTIMAL MODEL OF COST PREDICTION IN SHIP INTERIM PRODUCT ASSEMBLY

    Get PDF
    In order to accurately predict costs of the thousands of interim products that are assembled in shipyards, it is necessary to use skilled engineers to develop detailed Gantt charts for each interim product separately which takes many hours. It is helpful to develop a prediction tool to estimate the cost of interim products accurately and quickly without the need for skilled engineers. This will drive down shipyard costs and improve competitiveness. Data mining is used extensively for developing prediction models in other industries. Since ships consist of thousands of interim products, it is logical to develop a data mining methodology for a shipyard or any other manufacturing industry where interim products are produced. The methodology involves analysis of existing interim products and data collection. Pre-processing and principal component analysis is done to make the data “user-friendly” for later prediction processing and the development of both accurate and robust models. The support vector machine is demonstrated as the better model when there are a lower number of tuples. However as the number of tuples is increased to over 10000, then the artificial neural network model is recommended

    Evaluation of pesticide toxicity: a hierarchical QSAR approach to model the acute aquatic toxicity and avian oral toxicity of pesticides

    Get PDF
    The thesis aimed to extract information relevant to the hazard and risk assessment of pesticides. In particular, quantitative structure-activity relationship (QSAR) approaches have been used to build up a mathematical model able to predict the aquatic acute toxicity, LC50, and the avian oral toxicity, LD50, for pesticides. Ecotoxicological values were collected from several databases, and screened according to quality criteria. A hierarchical QSAR approach was applied for the prediction of acute aquatic toxicity. Chemical structures were encoded into molecular descriptors by an automated, seamless procedure available within the OpenMolGRID system. Different linear and non-linear regression techniques were used to obtain reliable and thoroughly validated QSARs. The final model was developed by a counter-propagation neural network coupled with genetic algorithms for variable selection. The proposed QSAR is consistent with McFarland's principle for biological activity and makes use of seven molecular descriptors. The model was assessed thoroughly in test (R2 = 0.8) and validation sets (R2 = 0.72), the y-scrambling test and a sensitivity/stability test. The second endpoint considered in this thesis was avian oral toxicity. As previously, the chemical description of chemicals was generated automatically by the OpenMolGRID system. The best classification model was chosen on the basis of the performances on a validation set of 19 data points, and was obtained from a support vector machine using 94 data points and nine variables selected by genetic algorithms (Error Ratetraining = 0.021, Error Ratevalidation = 0.158). The model allowed for a mechanistic estimation of the toxicological action. In fact, several descriptors selected for the final classification model encode for the interaction of the pesticides with other molecules. The presence of hetero-atoms, e.g. sulphur atoms, is correlated with the toxicity, and the pool of descriptor selected is generally dependent from the 3D conformation of the structures. These suggest that, in the case of avian oral toxicity, pesticides probably exert their toxic action through the interaction with some macromolecule and/or protein of the biological system
    corecore