310 research outputs found

    The Implementation of the Colored Abstract Simplicial Complex and its Application to Mesh Generation

    Full text link
    We introduce CASC: a new, modern, and header-only C++ library which provides a data structure to represent arbitrary dimension abstract simplicial complexes (ASC) with user-defined classes stored directly on the simplices at each dimension. This is accomplished by using the latest C++ language features including variadic template parameters introduced in C++11 and automatic function return type deduction from C++14. Effectively CASC decouples the representation of the topology from the interactions of user data. We present the innovations and design principles of the data structure and related algorithms. This includes a metadata aware decimation algorithm which is general for collapsing simplices of any dimension. We also present an example application of this library to represent an orientable surface mesh.Comment: 24 pages, 6 figure

    Singular Continuation: Generating Piece-wise Linear Approximations to Pareto Sets via Global Analysis

    Full text link
    We propose a strategy for approximating Pareto optimal sets based on the global analysis framework proposed by Smale (Dynamical systems, New York, 1973, pp. 531-544). The method highlights and exploits the underlying manifold structure of the Pareto sets, approximating Pareto optima by means of simplicial complexes. The method distinguishes the hierarchy between singular set, Pareto critical set and stable Pareto critical set, and can handle the problem of superposition of local Pareto fronts, occurring in the general nonconvex case. Furthermore, a quadratic convergence result in a suitable set-wise sense is proven and tested in a number of numerical examples.Comment: 29 pages, 12 figure

    An Open Source Mesh Generation Platform for Biophysical Modeling Using Realistic Cellular Geometries

    Get PDF
    ABSTRACT Advances in imaging methods such as electron microscopy, tomography, and other modalities are enabling high-resolution reconstructions of cellular and organelle geometries. Such advances pave the way for using these geometries for biophysical and mathematical modeling once these data can be represented as a geometric mesh, which, when carefully conditioned, enables the discretization and solution of partial differential equations. In this study, we outline the steps for a naïve user to approach GAMer 2 , a mesh generation code written in C++ designed to convert structural datasets to realistic geometric meshes, while preserving the underlying shapes. We present two example cases, 1) mesh generation at the subcellular scale as informed by electron tomography, and 2) meshing a protein with structure from x-ray crystallography. We further demonstrate that the meshes generated by GAMer are suitable for use with numerical methods. Together, this collection of libraries and tools simplifies the process of constructing realistic geometric meshes from structural biology data. SIGNIFICANCE As biophysical structure determination methods improve, the rate of new structural data is increasing. New methods that allow the interpretation, analysis, and reuse of such structural information will thus take on commensurate importance. In particular, geometric meshes, such as those commonly used in graphics and mathematics, can enable a myriad of mathematical analysis. In this work, we describe GAMer 2 , a mesh generation library designed for biological datasets. Using GAMer 2 and associated tools PyGAMer and BlendGAMer , biologists can robustly generate computer and algorithm friendly geometric mesh representations informed by structural biology data. We expect that GAMer 2 will be a valuable tool to bring realistic geometries to biophysical models

    An Open Source Mesh Generation Platform for Biophysical Modeling Using Realistic Cellular Geometries

    Full text link
    Advances in imaging methods such as electron microscopy, tomography and other modalities are enabling high-resolution reconstructions of cellular and organelle geometries. Such advances pave the way for using these geometries for biophysical and mathematical modeling once these data can be represented as a geometric mesh, which, when carefully conditioned, enables the discretization and solution of partial differential equations. In this study, we outline the steps for a na\"ive user to approach GAMer 2, a mesh generation code written in C++ designed to convert structural datasets to realistic geometric meshes, while preserving the underlying shapes. We present two example cases, 1) mesh generation at the subcellular scale as informed by electron tomography, and 2) meshing a protein with structure from x-ray crystallography. We further demonstrate that the meshes generated by GAMer are suitable for use with numerical methods. Together, this collection of libraries and tools simplifies the process of constructing realistic geometric meshes from structural biology data.Comment: 6 pages and 4 figures. Supplemental Movie available upon reques

    Analysis and Generation of Quality Polytopal Meshes with Applications to the Virtual Element Method

    Get PDF
    This thesis explores the concept of the quality of a mesh, the latter being intended as the discretization of a two- or three- dimensional domain. The topic is interdisciplinary in nature, as meshes are massively used in several fields from both the geometry processing and the numerical analysis communities. The goal is to produce a mesh with good geometrical properties and the lowest possible number of elements, able to produce results in a target range of accuracy. In other words, a good quality mesh that is also cheap to handle, overcoming the typical trade-off between quality and computational cost. To reach this goal, we first need to answer the question: ''How, and how much, does the accuracy of a numerical simulation or a scientific computation (e.g., rendering, printing, modeling operations) depend on the particular mesh adopted to model the problem? And which geometrical features of the mesh most influence the result?'' We present a comparative study of the different mesh types, mesh generation techniques, and mesh quality measures currently available in the literature related to both engineering and computer graphics applications. This analysis leads to the precise definition of the notion of quality for a mesh, in the particular context of numerical simulations of partial differential equations with the virtual element method, and the consequent construction of criteria to determine and optimize the quality of a given mesh. Our main contribution consists in a new mesh quality indicator for polytopal meshes, able to predict the performance of the virtual element method over a particular mesh before running the simulation. Strictly related to this, we also define a quality agglomeration algorithm that optimizes the quality of a mesh by wisely agglomerating groups of neighboring elements. The accuracy and the reliability of both tools are thoroughly verified in a series of tests in different scenarios

    Medial Axis Approximation and Regularization

    Get PDF
    Medial axis is a classical shape descriptor. Among many good properties, medial axis is thin, centered in the shape, and topology preserving. Therefore, it is constantly sought after by researchers and practitioners in their respective domains. However, two barriers remain that hinder wide adoption of medial axis. First, exact computation of medial axis is very difficult. Hence, in practice medial axis is approximated discretely. Though abundant approximation methods exist, they are either limited in scalability, insufficient in theoretical soundness, or susceptible to numerical issues. Second, medial axis is easily disturbed by small noises on its defining shape. A majority of current works define a significance measure to prune noises on medial axis. Among them, local measures are widely available due to their efficiency, but can be either too aggressive or conservative. While global measures outperform local ones in differentiating noises from features, they are rarely well-defined or efficient to compute. In this dissertation, we attempt to address these issues with sound, robust and efficient solutions. In Chapter 2, we propose a novel medial axis approximation called voxel core. We show voxel core is topologically and geometrically convergent to the true medial axis. We then describe a straightforward implementation as a result of our simple definition. In a variety of experiments, our method is shown to be efficient and robust in delivering topological promises on a wide range of shapes. In Chapter 3, we present Erosion Thickness (ET) to regularize instability. ET is the first global measure in 3D that is well-defined and efficient to compute. To demonstrate its usefulness, we utilize ET to generate a family of shape revealing and topology preserving skeletons. Finally, we point out future directions, and potential applications of our works in real world problems

    Diamond-based models for scientific visualization

    Get PDF
    Hierarchical spatial decompositions are a basic modeling tool in a variety of application domains including scientific visualization, finite element analysis and shape modeling and analysis. A popular class of such approaches is based on the regular simplex bisection operator, which bisects simplices (e.g. line segments, triangles, tetrahedra) along the midpoint of a predetermined edge. Regular simplex bisection produces adaptive simplicial meshes of high geometric quality, while simplifying the extraction of crack-free, or conforming, approximations to the original dataset. Efficient multiresolution representations for such models have been achieved in 2D and 3D by clustering sets of simplices sharing the same bisection edge into structures called diamonds. In this thesis, we introduce several diamond-based approaches for scientific visualization. We first formalize the notion of diamonds in arbitrary dimensions in terms of two related simplicial decompositions of hypercubes. This enables us to enumerate the vertices, simplices, parents and children of a diamond. In particular, we identify the number of simplices involved in conforming updates to be factorial in the dimension and group these into a linear number of subclusters of simplices that are generated simultaneously. The latter form the basis for a compact pointerless representation for conforming meshes generated by regular simplex bisection and for efficiently navigating the topological connectivity of these meshes. Secondly, we introduce the supercube as a high-level primitive on such nested meshes based on the atomic units within the underlying triangulation grid. We propose the use of supercubes to associate information with coherent subsets of the full hierarchy and demonstrate the effectiveness of such a representation for modeling multiresolution terrain and volumetric datasets. Next, we introduce Isodiamond Hierarchies, a general framework for spatial access structures on a hierarchy of diamonds that exploits the implicit hierarchical and geometric relationships of the diamond model. We use an isodiamond hierarchy to encode irregular updates to a multiresolution isosurface or interval volume in terms of regular updates to diamonds. Finally, we consider nested hypercubic meshes, such as quadtrees, octrees and their higher dimensional analogues, through the lens of diamond hierarchies. This allows us to determine the relationships involved in generating balanced hypercubic meshes and to propose a compact pointerless representation of such meshes. We also provide a local diamond-based triangulation algorithm to generate high-quality conforming simplicial meshes
    corecore