503 research outputs found

    XNOR Neural Engine: a Hardware Accelerator IP for 21.6 fJ/op Binary Neural Network Inference

    Full text link
    Binary Neural Networks (BNNs) are promising to deliver accuracy comparable to conventional deep neural networks at a fraction of the cost in terms of memory and energy. In this paper, we introduce the XNOR Neural Engine (XNE), a fully digital configurable hardware accelerator IP for BNNs, integrated within a microcontroller unit (MCU) equipped with an autonomous I/O subsystem and hybrid SRAM / standard cell memory. The XNE is able to fully compute convolutional and dense layers in autonomy or in cooperation with the core in the MCU to realize more complex behaviors. We show post-synthesis results in 65nm and 22nm technology for the XNE IP and post-layout results in 22nm for the full MCU indicating that this system can drop the energy cost per binary operation to 21.6fJ per operation at 0.4V, and at the same time is flexible and performant enough to execute state-of-the-art BNN topologies such as ResNet-34 in less than 2.2mJ per frame at 8.9 fps.Comment: 11 pages, 8 figures, 2 tables, 3 listings. Accepted for presentation at CODES'18 and for publication in IEEE Transactions on Computer-Aided Design of Circuits and Systems (TCAD) as part of the ESWEEK-TCAD special issu

    Dynamic Binary Translation for Embedded Systems with Scratchpad Memory

    Get PDF
    Embedded software development has recently changed with advances in computing. Rather than fully co-designing software and hardware to perform a relatively simple task, nowadays embedded and mobile devices are designed as a platform where multiple applications can be run, new applications can be added, and existing applications can be updated. In this scenario, traditional constraints in embedded systems design (i.e., performance, memory and energy consumption and real-time guarantees) are more difficult to address. New concerns (e.g., security) have become important and increase software complexity as well. In general-purpose systems, Dynamic Binary Translation (DBT) has been used to address these issues with services such as Just-In-Time (JIT) compilation, dynamic optimization, virtualization, power management and code security. In embedded systems, however, DBT is not usually employed due to performance, memory and power overhead. This dissertation presents StrataX, a low-overhead DBT framework for embedded systems. StrataX addresses the challenges faced by DBT in embedded systems using novel techniques. To reduce DBT overhead, StrataX loads code from NAND-Flash storage and translates it into a Scratchpad Memory (SPM), a software-managed on-chip SRAM with limited capacity. SPM has similar access latency as a hardware cache, but consumes less power and chip area. StrataX manages SPM as a software instruction cache, and employs victim compression and pinning to reduce retranslation cost and capture frequently executed code in the SPM. To prevent performance loss due to excessive code expansion, StrataX minimizes the amount of code inserted by DBT to maintain control of program execution. When a hardware instruction cache is available, StrataX dynamically partitions translated code among the SPM and main memory. With these techniques, StrataX has low performance overhead relative to native execution for MiBench programs. Further, it simplifies embedded software and hardware design by operating transparently to applications without any special hardware support. StrataX achieves sufficiently low overhead to make it feasible to use DBT in embedded systems to address important design goals and requirements

    Self-Test Mechanisms for Automotive Multi-Processor System-on-Chips

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Embedded Firmware Solutions

    Get PDF
    Computer scienc

    Digital signal processor fundamentals and system design

    Get PDF
    Digital Signal Processors (DSPs) have been used in accelerator systems for more than fifteen years and have largely contributed to the evolution towards digital technology of many accelerator systems, such as machine protection, diagnostics and control of beams, power supply and motors. This paper aims at familiarising the reader with DSP fundamentals, namely DSP characteristics and processing development. Several DSP examples are given, in particular on Texas Instruments DSPs, as they are used in the DSP laboratory companion of the lectures this paper is based upon. The typical system design flow is described; common difficulties, problems and choices faced by DSP developers are outlined; and hints are given on the best solution
    • …
    corecore