102 research outputs found

    Potential for Optical Sensor-Based Nitrogen Fertilization in Grain Sorghum (Sorghum bicolor L. Moench) in Arkansas

    Get PDF
    Ground-based active-optical (GBAO) crop sensors have become an effective tool to improve nitrogen (N) use efficiency and to predict yield early in the growing season, particularly for grass crops. Commercially available canopy sensors calculate the normalized difference vegetative index (NDVI) by emitting light in the red and near infrared range of the electromagnetic spectrum. The NDVI is used to evaluate vigor status and to estimate yield potential. However, few studies have been conducted to compare the performance of commercially available sensors. Therefore, a study was conducted using the most common crop canopy sensors: i) N-Tech\u27s GreenSeekerTM (GS), ii) Holland Scientific\u27s Crop CircleTM (CC), and iii) Minolta\u27s SPAD-502 chlorophyll content meter (CCM). The objective of this study was to find the optimum time for sensing and compare the relative performance of the sensors in estimating the yield potential of grain sorghum (Sorghum bicolor L. Moench). Treatments included six levels of N fertilization (0, 37, 74, 111, 148, and 185 kg N/ ha), applied in a single split 20 days after planting (DAP). Treatments were arranged in a randomized complete block design with five replications, in four locations in Arkansas, during 2012 and 2013. Sensors readings at vegetative growth stages V3, 4, 5 and 6. Results from simple regression analysis showed that the V3-V4 growth stage correlated better with grain yield than readings collected and any other time. In season estimated yield (INSEY) obtained at V3 captured 41, 57, 78, and 61% of the variation in grain sorghum yield when red NDVI of GS, red NDVI of CC, red edge for CC and CCM, respectively, were used. Results from these studies suggest that the CC sensor has a better potential for in-season site-specific N application in Arkansas than the GS sensor. The GS reflectance values appear to saturate after the V3 stage, in contrast with CC values that allow for discrimination past the V3 Stage. Therefore, the red edge wavebands of CC appear to be better suited to develop relationships between spectral vegetation indices and agronomic parameters

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Data fusion techniques for biomedical informatics and clinical decision support

    Get PDF
    Data fusion can be used to combine multiple data sources or modalities to facilitate enhanced visualization, analysis, detection, estimation, or classification. Data fusion can be applied at the raw-data, feature-based, and decision-based levels. Data fusion applications of different sorts have been built up in areas such as statistics, computer vision and other machine learning aspects. It has been employed in a variety of realistic scenarios such as medical diagnosis, clinical decision support, and structural health monitoring. This dissertation includes investigation and development of methods to perform data fusion for cervical cancer intraepithelial neoplasia (CIN) and a clinical decision support system. The general framework for these applications includes image processing followed by feature development and classification of the detected region of interest (ROI). Image processing methods such as k-means clustering based on color information, dilation, erosion and centroid locating methods were used for ROI detection. The features extracted include texture, color, nuclei-based and triangle features. Analysis and classification was performed using feature- and decision-level data fusion techniques such as support vector machine, statistical methods such as logistic regression, linear discriminant analysis and voting algorithms --Abstract, page iv

    Generation of a Land Cover Atlas of environmental critic zones using unconventional tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Urban land cover change detection analysis and modeling spatio-temporal Growth dynamics using Remote Sensing and GIS Techniques: A case study of Dhaka, Bangladesh

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Dhaka, the capital of Bangladesh, has undergone radical changes in its physical form, not only in its vast territorial expansion, but also through internal physical transformations over the last decades. In the process of urbanization, the physical characteristic of Dhaka is gradually changing as open spaces have been transformed into building areas, low land and water bodies into reclaimed builtup lands etc. This new urban fabric should be analyzed to understand the changes that have led to its creation. The primary objective of this research is to predict and analyze the future urban growth of Dhaka City. Another objective is to quantify and investigate the characteristics of urban land cover changes (1989-2009) using the Landsat satellite images of 1989, 1999 and 2009. Dhaka City Corporation (DCC) and its surrounding impact areas have been selected as the study area. A fisher supervised classification method has been applied to prepare the base maps with five land cover classes. To observe the change detection, different spatial metrics have been used for quantitative analysis. Moreover, some postclassification change detection techniques have also been implemented. Then it is found that the ‘builtup area’ land cover type is increasing in high rate over the years. The major contributors to this change are ‘fallow land’ and ‘water body’ land cover types. In the next stage, three different models have been implemented to simulate the land cover map of Dhaka city of 2009. These are named as ‘Stochastic Markov (St_Markov)’ Model, ‘Cellular Automata Markov (CA_Markov)’ Model and ‘Multi Layer Perceptron Markov (MLP_Markov)’ Model. Then the best-fitted model has been selected based on various Kappa statistics values and also by implementing other model validation techniques. This is how the ‘Multi Layer Perceptron Markov (MLP_Markov)’ Model has been qualified as the most suitable model for this research. Later, using the MLP_Markov model, the land cover map of 2019 has been predicted. The MLP_Markov model shows that 58% of the total study area will be converted into builtup area cover type in 2019. The interpretation of depicting the future scenario in quantitative accounts, as demonstrated in this research, will be of great value to the urban planners and decision makers, for the future planning of modern Dhaka City

    Derivation of forest inventory parameters from high-resolution satellite imagery for the Thunkel area, Northern Mongolia. A comparative study on various satellite sensors and data analysis techniques.

    Get PDF
    With the demise of the Soviet Union and the transition to a market economy starting in the 1990s, Mongolia has been experiencing dramatic changes resulting in social and economic disparities and an increasing strain on its natural resources. The situation is exacerbated by a changing climate, the erosion of forestry related administrative structures, and a lack of law enforcement activities. Mongolia’s forests have been afflicted with a dramatic increase in degradation due to human and natural impacts such as overexploitation and wildfire occurrences. In addition, forest management practices are far from being sustainable. In order to provide useful information on how to viably and effectively utilise the forest resources in the future, the gathering and analysis of forest related data is pivotal. Although a National Forest Inventory was conducted in 2016, very little reliable and scientifically substantiated information exists related to a regional or even local level. This lack of detailed information warranted a study performed in the Thunkel taiga area in 2017 in cooperation with the GIZ. In this context, we hypothesise that (i) tree species and composition can be identified utilising the aerial imagery, (ii) tree height can be extracted from the resulting canopy height model with accuracies commensurate with field survey measurements, and (iii) high-resolution satellite imagery is suitable for the extraction of tree species, the number of trees, and the upscaling of timber volume and basal area based on the spectral properties. The outcomes of this study illustrate quite clearly the potential of employing UAV imagery for tree height extraction (R2 of 0.9) as well as for species and crown diameter determination. However, in a few instances, the visual interpretation of the aerial photographs were determined to be superior to the computer-aided automatic extraction of forest attributes. In addition, imagery from various satellite sensors (e.g. Sentinel-2, RapidEye, WorldView-2) proved to be excellently suited for the delineation of burned areas and the assessment of tree vigour. Furthermore, recently developed sophisticated classifying approaches such as Support Vector Machines and Random Forest appear to be tailored for tree species discrimination (Overall Accuracy of 89%). Object-based classification approaches convey the impression to be highly suitable for very high-resolution imagery, however, at medium scale, pixel-based classifiers outperformed the former. It is also suggested that high radiometric resolution bears the potential to easily compensate for the lack of spatial detectability in the imagery. Quite surprising was the occurrence of dark taiga species in the riparian areas being beyond their natural habitat range. The presented results matrix and the interpretation key have been devised as a decision tool and/or a vademecum for practitioners. In consideration of future projects and to facilitate the improvement of the forest inventory database, the establishment of permanent sampling plots in the Mongolian taigas is strongly advised.2021-06-0

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Study on the Method of Constructing a Statistical Shape Model and Its Application to the Segmentation of Internal Organs in Medical Images

    Get PDF
    In image processing, segmentation is one of the critical tasks for diagnostic analysis and image interpretation. In the following thesis, we describe the investigation of three problems related to the segmentation algorithms for medical images: Active shape model algorithm, 3-dimensional (3-D) statistical shape model building and organic segmentation experiments. For the development of Active shape models, the constraints of statistical model reduced this algorithm to be difficult for various biological shapes. To overcome the coupling of parameters in the original algorithm, in this thesis, the genetic algorithm is introduced to relax the shape limitation. How to construct a robust and effective 3-D point model is still a key step in statistical shape models. Generally the shape information is obtained from manually segmented voxel data. In this thesis, a two-step procedure for generating these models was designed. After transformed the voxel data to triangular polygonal data, in the first step, attitudes of these interesting objects are aligned according their surface features. We propose to reflect the surface orientations by means of their Gauss maps. As well the Gauss maps are mapped to a complex plane using stereographic projection approach. The experiment was run to align a set of left lung models. The second step is identifying the positions of landmarks on polygonal surfaces. This is solved by surface parameterization method. We proposed two simplex methods to correspond the landmarks. A semi-automatic method attempts to “copy” the phasic positions of pre-placed landmarks to all the surfaces, which have been mapped to the same parameterization domain. Another automatic corresponding method attempts to place the landmarks equidistantly. Finally, the goodness experiments were performed to measure the difference to manually corresponded results. And we also compared the affection to correspondence when using different surface mapping methods. The third part of this thesis is applying the segmentation algorithms to solve clinical problems. We did not stick to the model-based methods but choose the suitable one or their complex according to the objects. In the experiment of lung regions segmentation which includes pulmonary nodules, we propose a complementary region growing method to deal with the unpredictable variation of image densities of lesion regions. In the experiments of liver regions, instead of using region growing method in 3-D style, we turn into a slice-by-slice style in order to reduce the overflows. The image intensity of cardiac regions is distinguishable from lung regions in CT image. But as to the adjacent zone of heart and liver boundary are generally blurry. We utilized a shape model guided method to refine the segmentation results.3-D segmentation techniques have been applied widely not only in medical imaging fields, but also in machine vision, computer graphic. At the last part of this thesis, we resume some interesting topics such as 3-D visualization for medical interpretation, human face recognition and object grasping robot etc.九州工業大学博士学位論文 学位記番号:工博甲第353号 学位授与年月日:平成25年9月27日Chapter 1: Introduction|Chapter 2: Framework of Medical Image Segmentation|Chapter 3: 2-D Organic Regions Using Active Shape Model and Genetic Algorithm|Chapter 4: Alignment of 3-D Models|Chapter 5: Corespondence of 3-D Models|Chapter 6:Experiments of Organic Segmentation|Chapter 7: Visualization Technology and Its Applications|Chapter 8: Conclusions and Future Works九州工業大学平成25年
    corecore