1 research outputs found

    Graph-Based Machine Learning for Passive Network Reconnaissance within Encrypted Networks

    Get PDF
    Network reconnaissance identifies a network’s vulnerabilities to both prevent and mitigate the impact of cyber-attacks. The difficulty of performing adequate network reconnaissance has been exacerbated by the rising complexity of modern networks (e.g., encryption). We identify that the majority of network reconnaissance solutions proposed in literature are infeasible for widespread deployment in realistic modern networks. This thesis provides novel network reconnaissance solutions to address the limitations of the existing conventional approaches proposed in literature. The existing approaches are limited by their reliance on large, heterogeneous feature sets making them difficult to deploy under realistic network conditions. In contrast, we devise a bipartite graph-based representation to create network reconnaissance solutions that rely only on a single feature (e.g., the Internet protocol (IP) address field). We exploit a widely available feature set to provide network reconnaissance solutions that are scalable, independent of encryption, and deployable across diverse Internet (TCP/IP) networks. We design bipartite graph embeddings (BGE); a graph-based machine learning (ML) technique for extracting insight from the structural properties of the bipartite graph-based representation. BGE is the first known graph embedding technique designed explicitly for network reconnaissance. We validate the use of BGE through an evaluation of a university’s enterprise network. BGE is shown to provide insight into crucial areas of network reconnaissance (e.g., device characterisation, service prediction, and network visualisation). We design an extension of BGE to acquire insight within a private network. Private networks—such as a virtual private network (VPN)—have posed significant challenges for network reconnaissance as they deny direct visibility into their composition. Our extension of BGE provides the first known solution for inferring the composition of both the devices and applications acting behind diverse private networks. This thesis provides novel graph-based ML techniques for two crucial aims of network reconnaissance—device characterisation and intrusion detection. The techniques developed within this thesis provide unique cybersecurity solutions to both prevent and mitigate the impact of cyber-attacks.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering , 202
    corecore