217,201 research outputs found

    Battery Electric Vehicles Network Equilibrium With Flow-Dependent Energy Consumption

    Get PDF
    Recent studies show that energy consumption of battery electric vehicles (BEVs) increases in traffic congestion. Therefore, it is important to consider the effect of link flow on BEV energy consumption. The flow-dependent energy consumption changes the route choice and user equilibrium conditions. In this paper, some shortcomings of available BEV flow-dependent energy consumption user equilibrium models are shown first. Then, “sufficient” as well as “sufficient and necessary” user equilibrium based on the generalized travel time of each path and sub-path penalties are defined and modeled for flow-dependent energy consumption. While it is difficult to solve the sufficient and necessary model, the sufficient model can be solved directly with commercial solvers for small to medium-sized networks by generating all paths. An iterative algorithm is also presented to generate paths as required to solve the problem for larger networks. Numerical examples demonstrate the model and proposed algorithm, and analyze the impact of flow-dependent energy consumption on equilibrium conditions

    Adaptive-predictive control strategy for HVAC systems in smart buildings – A review

    Get PDF
    Abstract High share of energy consumption in buildings and subsequent increase in greenhouse gas emissions along with stricter legislations have motivated researchers to look for sustainable solutions in order to reduce energy consumption by using alternative renewable energy resources and improving the efficiency in this sector. Today, the smart building and socially resilient city concepts have been introduced where building automation technologies are implemented to manage and control the energy generation/consumption/storage. Building automation and control systems can be roughly classified into traditional and advanced control strategies. Traditional strategies are not a viable choice for more sophisticated features required in smart buildings. The main focus of this paper is to review advanced control strategies and their impact on buildings and technical systems with respect to energy/cost saving. These strategies should be predictive/responsive/adaptive against weather, user, grid and thermal mass. In this context, special attention is paid to model predictive control and adaptive control strategies. Although model predictive control is the most common type used in buildings, it is not well suited for systems consisting of uncertainties and unpredictable data. Thus, adaptive predictive control strategies are being developed to address these shortcomings. Despite great progress in this field, the quantified results of these strategies reported in literature showed a high level of inconsistency. This is due to the application of different control modes, various boundary conditions, hypotheses, fields of application, and type of energy consumption in different studies. Thus, this review assesses the implementations and configurations of advanced control solutions and highlights research gaps in this field that need further investigations

    Sizing domestic air-source heat pump systems with thermal storage under varying electrical load shifting strategies

    Get PDF
    The demand for local heat storage to help manage energy demand in dwellings is likely to increase as the electrification of heat through heat pumps becomes more widespread. Sizing thermal energy storage systems has been an important topic in contemporary literature, but the effect of the electrical load shifting tariff and the service the householder receives in terms of space-heating and hot water delivered, however, has not and this is particularly important when households transition from conventional gas fired to low carbon technologies. This paper takes a whole system modelling approach to understand the impact of user demand patterns and load shifting scenarios on the volume of energy storage required for a heat-pump installation. The work uses monitoring data from several family homes to drive the simulation and finds that the level of service the householder receives is sensitive to their patterns of consumption, thermal energy storage volume and the electricity tariff, with some households being far more sensitive to tariff choice than others. The paper introduces a novel, quantifiable measure of service for space-heating and hot water systems that can be incorporated into thermal energy storage sizing procedures

    Energy Efficiency Analysis And Optimization For Mobile Platforms

    Get PDF
    The introduction of mobile devices changed the landscape of computing. Gradually, these devices are replacing traditional personal computer (PCs) to become the devices of choice for entertainment, connectivity, and productivity. There are currently at least 45.5 million people in the United States who own a mobile device, and that number is expected to increase to 1.5 billion by 2015. Users of mobile devices expect and mandate that their mobile devices have maximized performance while consuming minimal possible power. However, due to the battery size constraints, the amount of energy stored in these devices is limited and is only growing by 5% annually. As a result, we focused in this dissertation on energy efficiency analysis and optimization for mobile platforms. We specifically developed SoftPowerMon, a tool that can power profile Android platforms in order to expose the power consumption behavior of the CPU. We also performed an extensive set of case studies in order to determine energy inefficiencies of mobile applications. Through our case studies, we were able to propose optimization techniques in order to increase the energy efficiency of mobile devices and proposed guidelines for energy-efficient application development. In addition, we developed BatteryExtender, an adaptive user-guided tool for power management of mobile devices. The tool enables users to extend battery life on demand for a specific duration until a particular task is completed. Moreover, we examined the power consumption of System-on-Chips (SoCs) and observed the impact on the energy efficiency in the event of offloading tasks from the CPU to the specialized custom engines. Based on our case studies, we were able to demonstrate that current software-based power profiling techniques for SoCs can have an error rate close to 12%, which needs to be addressed in order to be able to optimize the energy consumption of the SoC. Finally, we summarize our contributions and outline possible direction for future research in this field

    Challenges in Energy Awareness: a Swedish case of heating consumption in households

    Get PDF
    An efficient and sustainable energy system is an important factor when minimising the environmental impact caused by the cities. We have worked with questions on how to construct a more direct connection between customers-­‐citizens and a provider of district heating for negotiating notions of comfort in relation to heating and hot tap water use. In this paper we present visualisation concepts of such connections and reflect on the outcomes in terms of the type of data needed for sustainability assessment, as well as the methods explored for channelling information on individual consumption and environmental impact between customers and the provider of district heating. We have defined challenges in sustainable design for consumer behaviour change in the case of reducing heat and hot water consumption in individual households: (1) The problematic relation between individual behaviour steering and system level district heating, (2) The complexity of environmental impact as indicator for behaviour change, and (3) Ethical considerations concerning the role of the designer

    Modelling the User: How design for sustainable behaviour can reveal different stakeholder perspectives on human nature

    Get PDF
    Copyright @ 2010 TU DelftInfluencing more environmentally friendly and sustainable behaviour is a current focus of many projects, ranging from government social marketing campaigns, education and tax structures to designers’ work on interactive products, services and environments. There is a wide variety of techniques and methods used—we have identified over 100 design patterns in our Design with Intent toolkit—each intended to work via a particular set of cognitive and environmental principles. These approaches make different assumptions about ‘what people are like’: how users will respond to behavioural interventions, and why, and in the process reveal some of the assumptions that designers and other stakeholders, such as clients commissioning a project, make about human nature. In this paper, we discuss three simple models of user behaviour—the Pinball, the Shortcut and the Thoughtful—which emerge from user experience designers’ statements about users while focused on designing for behaviour change. We characterise these models using systems terminology and examine the application of each model to design for sustainable behaviour via a series of examples

    Affordances, constraints and information flows as ‘leverage points’ in design for sustainable behaviour

    Get PDF
    Copyright @ 2012 Social Science Electronic PublishingTwo of Donella Meadows' 'leverage points' for intervening in systems (1999) seem particularly pertinent to design for sustainable behaviour, in the sense that designers may have the scope to implement them in (re-)designing everyday products and services. The 'rules of the system' -- interpreted here to refer to affordances and constraints -- and the structure of information flows both offer a range of opportunities for design interventions to in fluence behaviour change, and in this paper, some of the implications and possibilities are discussed with reference to parallel concepts from within design, HCI and relevant areas of psychology

    Sustainable consumption: towards action and impact. : International scientific conference November 6th-8th 2011, Hamburg - European Green Capital 2011, Germany: abstract volume

    Get PDF
    This volume contains the abstracts of all oral and poster presentations of the international scientific conference „Sustainable Consumption – Towards Action and Impact“ held in Hamburg (Germany) on November 6th-8th 2011. This unique conference aims to promote a comprehensive academic discourse on issues concerning sustainable consumption and brings together scholars from a wide range of academic disciplines. In modern societies, private consumption is a multifaceted and ambivalent phenomenon: it is a ubiquitous social practice and an economic driving force, yet at the same time, its consequences are in conflict with important social and environmental sustainability goals. Finding paths towards “sustainable consumption” has therefore become a major political issue. In order to properly understand the challenge of “sustainable consumption”, identify unsustainable patterns of consumption and bring forward the necessary innovations, a collaborative effort of researchers from different disciplines is needed

    Home Energy Consumption Feedback: A User Survey

    Get PDF
    Buildings account for a relevant fraction of the energy consumed by a country, up to 20-40% of the yearly energy consumption. If only electricity is considered, the fraction is even bigger, reaching around 73% of the total electricity consumption, equally divided into residential and commercial dwellings. Building and Home Automation have a potential to profoundly impact current and future buildings' energy efciency by informing users about their current consumption patterns, by suggesting more efcient behaviors, and by pro-actively changing/modifying user actions for reducing the associated energy wastes. In this paper we investigate the capability of an automated home to automatically, and timely, inform users about energy consumption, by harvesting opinions of residential inhabitants on energy feedback interfaces. We report here the results of an on-line survey, involving nearly a thousand participants, about feedback mechanisms suggested by the research community, with the goal of understanding what feedback is felt by home inhabitants easier to understand, more likely to be used, and more effective in promoting behavior changes. Contextually, we also collect and distill users' attitude towards in-home energy displays and their preferred locations, gathering useful insights on user-driven design of more effective in-home energy display
    • …
    corecore