6,463 research outputs found

    Deep Learning Prediction Models for Runway Configuration Selection and Taxi Times Based on Surface Weather

    Get PDF
    Growth in air traffic demand in the United States has led to an increase in ground delays at major airports in the nation. Ground delays, including taxi time delays, directly impacts the block time and block fuel for flights which affects the airlines operationally and financially. Additionally, runway configuration selection at an airport significantly impacts the airport capacity, throughput, and delays as it is vital in directing the flow of air traffic in and out of an airport. Runway configuration selection is based on interrelated factors, including weather variables such as wind and visibility, airport facilities such as instrument approach procedures for runways, noise abatement procedures, arrival and departure demand, and coordination of ATC with neighboring airport facilities. The research problem of this study investigated whether runway configuration selection and taxi out times at airports can be predicted with hourly surface weather observations. This study utilized two sequence-to-sequence Deep Learning architectures, LSTM encoderdecoder and Transformer, to predict taxi out times and runway configuration selection for airports in MCO and JFK. An input sequence of 12 hours was used, which included surface weather data and hourly departures and arrivals. The output sequence was set to 6 hours, consisting of taxi out times for the regression models and runway configuration selection for the classification models. For the taxi out times models, the LSTM encoder-decoder model performed better than the Transformer model with the best MSE for output Sequence 2 of 41.26 for MCO and 45.82 for JFK. The SHAP analysis demonstrated that the Departure and Arrival variables had the most significant contribution to the predictions of the model. For the runway configuration prediction tasks, the LSTM encoder-decoder model performed better than the Transformer model for the binary classification task at MCO. The LSTM encoder-decoder and Transformer models demonstrated comparable performance for the multiclass classification task at JFK. Out of the six output sequences, Sequence 3 demonstrated the best performance with an accuracy of 80.24 and precision of 0.70 for MCO and an accuracy of 77.26 and precision of 0.76 for JFK. The SHAP analysis demonstrated that the Departure, Dew Point, and Wind Direction variables had the most significant contribution to the predictions of the model

    The 7th Conference of PhD Students in Computer Science

    Get PDF

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Do Deep Neural Networks Contribute to Multivariate Time Series Anomaly Detection?

    Full text link
    Anomaly detection in time series is a complex task that has been widely studied. In recent years, the ability of unsupervised anomaly detection algorithms has received much attention. This trend has led researchers to compare only learning-based methods in their articles, abandoning some more conventional approaches. As a result, the community in this field has been encouraged to propose increasingly complex learning-based models mainly based on deep neural networks. To our knowledge, there are no comparative studies between conventional, machine learning-based and, deep neural network methods for the detection of anomalies in multivariate time series. In this work, we study the anomaly detection performance of sixteen conventional, machine learning-based and, deep neural network approaches on five real-world open datasets. By analyzing and comparing the performance of each of the sixteen methods, we show that no family of methods outperforms the others. Therefore, we encourage the community to reincorporate the three categories of methods in the anomaly detection in multivariate time series benchmarks

    Big Data - Supply Chain Management Framework for Forecasting: Data Preprocessing and Machine Learning Techniques

    Full text link
    This article intends to systematically identify and comparatively analyze state-of-the-art supply chain (SC) forecasting strategies and technologies. A novel framework has been proposed incorporating Big Data Analytics in SC Management (problem identification, data sources, exploratory data analysis, machine-learning model training, hyperparameter tuning, performance evaluation, and optimization), forecasting effects on human-workforce, inventory, and overall SC. Initially, the need to collect data according to SC strategy and how to collect them has been discussed. The article discusses the need for different types of forecasting according to the period or SC objective. The SC KPIs and the error-measurement systems have been recommended to optimize the top-performing model. The adverse effects of phantom inventory on forecasting and the dependence of managerial decisions on the SC KPIs for determining model performance parameters and improving operations management, transparency, and planning efficiency have been illustrated. The cyclic connection within the framework introduces preprocessing optimization based on the post-process KPIs, optimizing the overall control process (inventory management, workforce determination, cost, production and capacity planning). The contribution of this research lies in the standard SC process framework proposal, recommended forecasting data analysis, forecasting effects on SC performance, machine learning algorithms optimization followed, and in shedding light on future research

    Outage-Watch: Early Prediction of Outages using Extreme Event Regularizer

    Full text link
    Cloud services are omnipresent and critical cloud service failure is a fact of life. In order to retain customers and prevent revenue loss, it is important to provide high reliability guarantees for these services. One way to do this is by predicting outages in advance, which can help in reducing the severity as well as time to recovery. It is difficult to forecast critical failures due to the rarity of these events. Moreover, critical failures are ill-defined in terms of observable data. Our proposed method, Outage-Watch, defines critical service outages as deteriorations in the Quality of Service (QoS) captured by a set of metrics. Outage-Watch detects such outages in advance by using current system state to predict whether the QoS metrics will cross a threshold and initiate an extreme event. A mixture of Gaussian is used to model the distribution of the QoS metrics for flexibility and an extreme event regularizer helps in improving learning in tail of the distribution. An outage is predicted if the probability of any one of the QoS metrics crossing threshold changes significantly. Our evaluation on a real-world SaaS company dataset shows that Outage-Watch significantly outperforms traditional methods with an average AUC of 0.98. Additionally, Outage-Watch detects all the outages exhibiting a change in service metrics and reduces the Mean Time To Detection (MTTD) of outages by up to 88% when deployed in an enterprise cloud-service system, demonstrating efficacy of our proposed method.Comment: Accepted to ESEC/FSE 202

    Forecasting in Database Systems

    Get PDF
    Time series forecasting is a fundamental prerequisite for decision-making processes and crucial in a number of domains such as production planning and energy load balancing. In the past, forecasting was often performed by statistical experts in dedicated software environments outside of current database systems. However, forecasts are increasingly required by non-expert users or have to be computed fully automatically without any human intervention. Furthermore, we can observe an ever increasing data volume and the need for accurate and timely forecasts over large multi-dimensional data sets. As most data subject to analysis is stored in database management systems, a rising trend addresses the integration of forecasting inside a DBMS. Yet, many existing approaches follow a black-box style and try to keep changes to the database system as minimal as possible. While such approaches are more general and easier to realize, they miss significant opportunities for improved performance and usability. In this thesis, we introduce a novel approach that seamlessly integrates time series forecasting into a traditional database management system. In contrast to flash-back queries that allow a view on the data in the past, we have developed a Flash-Forward Database System (F2DB) that provides a view on the data in the future. It supports a new query type - a forecast query - that enables forecasting of time series data and is automatically and transparently processed by the core engine of an existing DBMS. We discuss necessary extensions to the parser, optimizer, and executor of a traditional DBMS. We furthermore introduce various optimization techniques for three different types of forecast queries: ad-hoc queries, recurring queries, and continuous queries. First, we ease the expensive model creation step of ad-hoc forecast queries by reducing the amount of processed data with traditional sampling techniques. Second, we decrease the runtime of recurring forecast queries by materializing models in a specialized index structure. However, a large number of time series as well as high model creation and maintenance costs require a careful selection of such models. Therefore, we propose a model configuration advisor that determines a set of forecast models for a given query workload and multi-dimensional data set. Finally, we extend forecast queries with continuous aspects allowing an application to register a query once at our system. As new time series values arrive, we send notifications to the application based on predefined time and accuracy constraints. All of our optimization approaches intend to increase the efficiency of forecast queries while ensuring high forecast accuracy
    • …
    corecore