1,810 research outputs found

    Assessing load-sharing within optimistic simulation platforms

    Get PDF
    The advent of multi-core machines has lead to the need for revising the architecture of modern simulation platforms. One recent proposal we made attempted to explore the viability of load-sharing for optimistic simulators run on top of these types of machines. In this article, we provide an extensive experimental study for an assessment of the effects on run-time dynamics by a load-sharing architecture that has been implemented within the ROOT-Sim package, namely an open source simulation platform adhering to the optimistic synchronization paradigm. This experimental study is essentially aimed at evaluating possible sources of overheads when supporting load-sharing. It has been based on differentiated workloads allowing us to generate different execution profiles in terms of, e.g., granularity/locality of the simulation events. © 2012 IEEE

    Load sharing for optimistic parallel simulations on multicore machines

    Get PDF
    Parallel Discrete Event Simulation (PDES) is based on the partitioning of the simulation model into distinct Logical Processes (LPs), each one modeling a portion of the entire system, which are allowed to execute simulation events concurrently. This allows exploiting parallel computing architectures to speedup model execution, and to make very large models tractable. In this article we cope with the optimistic approach to PDES, where LPs are allowed to concurrently process their events in a speculative fashion, and rollback/ recovery techniques are used to guarantee state consistency in case of causality violations along the speculative execution path. Particularly, we present an innovative load sharing approach targeted at optimizing resource usage for fruitful simulation work when running an optimistic PDES environment on top of multi-processor/multi-core machines. Beyond providing the load sharing model, we also define a load sharing oriented architectural scheme, based on a symmetric multi-threaded organization of the simulation platform. Finally, we present a real implementation of the load sharing architecture within the open source ROme OpTimistic Simulator (ROOT-Sim) package. Experimental data for an assessment of both viability and effectiveness of our proposal are presented as well. Copyright is held by author/owner(s)

    A protocol reconfiguration and optimization system for MPI

    Get PDF
    Modern high performance computing (HPC) applications, for example adaptive mesh refinement and multi-physics codes, have dynamic communication characteristics which result in poor performance on current Message Passing Interface (MPI) implementations. The degraded application performance can be attributed to a mismatch between changing application requirements and static communication library functionality. To improve the performance of these applications, MPI libraries should change their protocol functionality in response to changing application requirements, and tailor their functionality to take advantage of hardware capabilities. This dissertation describes Protocol Reconfiguration and Optimization system for MPI (PRO-MPI), a framework for constructing profile-driven reconfigurable MPI libraries; these libraries use past application characteristics (profiles) to dynamically change their functionality to match the changing application requirements. The framework addresses the challenges of designing and implementing the reconfigurable MPI libraries, which include collecting and reasoning about application characteristics to drive the protocol reconfiguration and defining abstractions required for implementing these reconfigurations. Two prototype reconfigurable MPI implementations based on the framework - Open PRO-MPI and Cactus PRO-MPI - are also presented to demonstrate the utility of the framework. To demonstrate the effectiveness of reconfigurable MPI libraries, this dissertation presents experimental results to show the impact of using these libraries on the application performance. The results show that PRO-MPI improves the performance of important HPC applications and benchmarks. They also show that HyperCLaw performance improves by approximately 22% when exact profiles are available, and HyperCLaw performance improves by approximately 18% when only approximate profiles are available

    Improving the performance of parallel scientific applications using cache injection

    Get PDF
    Cache injection is a viable technique to improve the performance of data-intensive parallel applications. This dissertation characterizes cache injection of incoming network data in terms of parallel application performance. My results show that the benefit of this technique is dependent on: the ratio of processor speed to memory speed, the cache injection policy, and the application\u27s communication characteristics. Cache injection addresses the memory wall for I/O by writing data into a processor\u27s cache directly from the I/O bus. This technique, unlike data prefetching, reduces the number of reads served by the memory unit. This reduction is significant for data-intensive applications whose performance is dominated by compulsory cache misses and cannot be alleviated by traditional caching systems. Unlike previous work on cache injection which focused on reducing host network stack overhead incurred by memory copies, I show that applications can directly benefit from this technique based on their temporal and spatial locality in accessing incoming network data. I also show that the performance of cache injection is directly proportional to the ratio of processor speed to memory speed. In other words, systems with a memory wall can provide significantly better performance with cache injection and an appropriate injection policy. This result implies that multi-core and many-core architectures would benefit from this technique. Finally, my results show that the application\u27s communication characteristics are key to cache injection performance. For example, cache injection can improve the performance of certain collective communication operations by up to 20% as a function of message size

    A load-sharing architecture for high performance optimistic simulations on multi-core machines

    Get PDF
    In Parallel Discrete Event Simulation (PDES), the simulation model is partitioned into a set of distinct Logical Processes (LPs) which are allowed to concurrently execute simulation events. In this work we present an innovative approach to load-sharing on multi-core/multiprocessor machines, targeted at the optimistic PDES paradigm, where LPs are speculatively allowed to process simulation events with no preventive verification of causal consistency, and actual consistency violations (if any) are recovered via rollback techniques. In our approach, each simulation kernel instance, in charge of hosting and executing a specific set of LPs, runs a set of worker threads, which can be dynamically activated/deactivated on the basis of a distributed algorithm. The latter relies in turn on an analytical model that provides indications on how to reassign processor/core usage across the kernels in order to handle the simulation workload as efficiently as possible. We also present a real implementation of our load-sharing architecture within the ROme OpTimistic Simulator (ROOT-Sim), namely an open-source C-based simulation platform implemented according to the PDES paradigm and the optimistic synchronization approach. Experimental results for an assessment of the validity of our proposal are presented as well

    Prediction of the impact of network switch utilization on application performance via active measurement

    Get PDF
    Although one of the key characteristics of High Performance Computing (HPC) infrastructures are their fast interconnecting networks, the increasingly large computational capacity of HPC nodes and the subsequent growth of data exchanges between them constitute a potential performance bottleneck. To achieve high performance in parallel executions despite network limitations, application developers require tools to measure their codes’ network utilization and to correlate the network’s communication capacity with the performance of their applications. This paper presents a new methodology to measure and understand network behavior. The approach is based in two different techniques that inject extra network communication. The first technique aims to measure the fraction of the network that is utilized by a software component (an application or an individual task) to determine the existence and severity of network contention. The second injects large amounts of network traffic to study how applications behave on less capable or fully utilized networks. The measurements obtained by these techniques are combined to predict the performance slowdown suffered by a particular software component when it shares the network with others. Predictions are obtained by considering several training sets that use raw data from the two measurement techniques. The sensitivity of the training set size is evaluated by considering 12 different scenarios. Our results find the optimum training set size to be around 200 training points. When optimal data sets are used, the proposed methodology provides predictions with an average error of 9.6% considering 36 scenarios.With the support of the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Expedient 2013BP_B00243). The research leading to these results has received funding from the European Research Council under the European Union’s 7th FP (FP/2007-2013) /ERC GA n. 321253. Work partially supported by the Spanish Ministry of Science and Innovation (TIN2012-34557)Peer ReviewedPostprint (author's final draft
    • …
    corecore