3,914 research outputs found

    Planning of Truck Platoons: a Literature Review and Directions for Future Research

    Get PDF
    A truck platoon is a set of virtually linked trucks that drive closely behind one another using automated driving technology. Benefits of truck platooning include cost savings, reduced emissions, and more efficient utilization of road capacity. To fully reap these benefits in the initial phases requires careful planning of platoons based on trucks’ itineraries and time schedules. This paper provides a framework to classify various new transportation planning problems that arise in truck platooning, surveys relevant operations research models for these problems in the literature and identifies directions for future research

    Emergent behaviors in the Internet of things: The ultimate ultra-large-scale system

    Get PDF
    To reach its potential, the Internet of Things (IoT) must break down the silos that limit applications' interoperability and hinder their manageability. Doing so leads to the building of ultra-large-scale systems (ULSS) in several areas, including autonomous vehicles, smart cities, and smart grids. The scope of ULSS is both large and complex. Thus, the authors propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly programming all possible decisions in the vast space of ULSS scenarios, HEB relies on the emergent behaviors induced by local rules at each level of the hierarchy. The authors discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. They also illustrate the HEB concepts in reference to autonomous vehicles. This use case paves the way to the discussion of new lines of research.Damian Roca work was supported by a Doctoral Scholarship provided by FundaciĂłn La Caixa. This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493) and by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P).Peer ReviewedPostprint (author's final draft

    The Myth of the Learning Curve: Tactics and Training in the 12th Canadian Infantry Brigade, 1916-1918

    Get PDF
    Canadian military historians generally accept that during the First World War the Canadian military improved over time. This idea of a “learning curve” suggests that Canadians began the war as inexperienced colonial volunteers and, as the Corps gained experience on the battlefield, commanders and ordinary soldiers alike learned from their mistakes and successes and improved combat tactics from battle to battle and from year to year.1 Several different approaches to this argument are evident in the literature. Tim Cook and Bill Rawling both published works in the mid-1990s that argue technology was the impetus behind this process of learning. On the other hand, Shane Schreiber, James McWilliams and R. James Steel have focused on what they see as the ultimate success of the learning curve: the August 1918 Battle of Amiens.2 However, while technology played an important role in the conduct of the war, and the Battle of Amiens was indeed a significant Allied victory, one question remains: where is the hard evidence that this learning curve exists? One of the best ways to find evidence of “learning,” a largely abstract process, is through an examination of training. Because training is meant to impart specific knowledge, during the Great War written training instructions and orders were spelled out in minute and explicit detail and the lessons that were to be learned from various exercises were highlighted. While many excellent works have been produced on the Canadian Expeditionary Force, there is still room for further scholarship. Until recently, training has been a sorely neglected subject in the historiography. In recent years historians such as such as Andrew Iarocci and David Campbell have begun to re-examine training as a means of measuring and evaluating the learning curve.3 This paper builds on the work of previous scholars and extends some of their arguments while challenging others. It examines the training of the 12th Canadian Infantry Brigade for the battles of the Somme and Amiens, as well as the official training manuals, to look at tactical change over time. It argues that while combat became more complex and “all arms” oriented, the basic tactical concepts of 1916 essentially remained the same in 1918. Except for terminology and the addition of new weapons, little changed in how the 12th Canadian Infantry Brigade was taught to fight between the Somme and Amiens. Indeed, while new weapons were utilized and emphasized in training, they were merely integrated into existing tactical doctrine and had little appreciable impact on what was envisioned as the key to battlefield success

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs

    Truck Platooning:Planning and Behaviour

    Get PDF

    Truck Platooning:Planning and Behaviour

    Get PDF

    Platooning-based control techniques in transportation and logistic

    Get PDF
    This thesis explores the integration of autonomous vehicle technology with smart manufacturing systems. At first, essential control methods for autonomous vehicles, including Linear Matrix Inequalities (LMIs), Linear Quadratic Regulation (LQR)/Linear Quadratic Tracking (LQT), PID controllers, and dynamic control logic via flowcharts, are examined. These techniques are adapted for platooning to enhance coordination, safety, and efficiency within vehicle fleets, and various scenarios are analyzed to confirm their effectiveness in achieving predetermined performance goals such as inter-vehicle distance and fuel consumption. A first approach on simplified hardware, yet realistic to model the vehicle's behavior, is treated to further prove the theoretical results. Subsequently, performance improvement in smart manufacturing systems (SMS) is treated. The focus is placed on offline and online scheduling techniques exploiting Mixed Integer Linear Programming (MILP) to model the shop floor and Model Predictive Control (MPC) to adapt scheduling to unforeseen events, in order to understand how optimization algorithms and decision-making frameworks can transform resource allocation and production processes, ultimately improving manufacturing efficiency. In the final part of the work, platooning techniques are employed within SMS. Autonomous Guided Vehicles (AGVs) are reimagined as autonomous vehicles, grouping them within platoon formations according to different criteria, and controlled to avoid collisions while carrying out production orders. This strategic integration applies platooning principles to transform AGV logistics within the SMS. The impact of AGV platooning on key performance metrics, such as makespan, is devised, providing insights into optimizing manufacturing processes. Throughout this work, various research fields are examined, with intersecting future technologies from precise control in autonomous vehicles to the coordination of manufacturing resources. This thesis provides a comprehensive view of how optimization and automation can reshape efficiency and productivity not only in the domain of autonomous vehicles but also in manufacturing

    Distributed, decentralised and compensational mechanisms for platoon formation

    Get PDF
    Verkehrsprobleme nehmen mit der weltweiten Urbanisierung und der Zunahme der Anzahl der Fahrzeuge pro Kopf zu. Platoons, eine Formation von eng hintereinander fahrenden Fahrzeugen, stellen sich als mögliche Lösung dar, da bestehende Forschungen darauf hinweisen, dass sie zu einer besseren Straßenauslastung beitragen, den Kraftstoffverbrauch und die Emissionen reduzieren und Engpässe schneller entlasten können. Rund um das Thema Platooning gibt es viele Aspekte zu erforschen: Sicherheit, Stabilität, Kommunikation, Steuerung und Betrieb, die allesamt notwendig sind, um den Einsatz von Platooning im Alltagsverkehr näher zu bringen. Während in allen genannten Bereichen bereits umfangreiche Forschungen durchgeführt wurden, gibt es bisher nur wenige Arbeiten, die sich mit der logischen Gruppierung von Fahrzeugen in Platoons beschäftigen. Daher befasst sich diese Arbeit mit dem noch wenig erforschten Problem der Platoonbildung, wobei sich die vorhandenen Beispiele mit auf Autobahnen fahrenden Lastkraftwagen beschäftigen. Diese Fälle befinden sich auf der strategischen und taktischen Ebene der Planung, da sie von einem großen Zeithorizont profitieren und die Gruppierung entsprechend optimiert werden kann. Die hier vorgestellten Ansätze befinden sich hingegen auf der operativen Ebene, indem Fahrzeuge aufgrund der verteilten und dezentralen Natur dieser Ansätze spontan und organisch gruppiert und gesteuert werden. Dadurch entstehen sogenannte opportunistische Platoons, die aufgrund ihrer Flexibilität eine vielversprechende Voraussetzung für alle Netzwerkarte bieten könnten. Insofern werden in dieser Arbeit zwei neuartige Algorithmen zur Bildung von Platoons vorgestellt: ein verteilter Ansatz, der von klassischen Routing-Problemen abgeleitet wurde, und ein ergänzender dezentraler kompensatorischer Ansatz. Letzteres nutzt automatisierte Verhandlungen, um es den Fahrzeugen zu erleichtern, sich auf der Basis eines monetären Austausches in einem Platoon zu organisieren. In Anbetracht der Tatsache, dass alle Verkehrsteilnehmer über eine Reihe von Präferenzen, Einschränkungen und Zielen verfügen, muss das vorgeschlagene System sicherstellen, dass jede angebotene Lösung für die einzelnen Fahrzeuge akzeptabel und vorteilhaft ist und den möglichen Aufwand, die Kosten und die Opfer überwiegt. Dies wird erreicht, indem den Platooning-Fahrzeugen eine Form von Anreiz geboten wird, im Sinne von entweder Kostensenkung oder Ampelpriorisierung. Um die vorgeschlagenen Algorithmen zu testen, wurde eine Verkehrssimulation unter Verwendung realer Netzwerke mit realistischer Verkehrsnachfrage entwickelt. Die Verkehrsteilnehmer wurden in Agenten umgewandelt und mit der notwendigen Funktionalität ausgestattet, um Platoons zu bilden und innerhalb dieser zu operieren. Die Anwendbarkeit und Eignung beider Ansätze wurde zusammen mit verschiedenen anderen Aspekten untersucht, die den Betrieb von Platoons betreffen, wie Größe, Verkehrszustand, Netzwerkpositionierung und Anreizmethoden. Die Ergebnisse zeigen, dass die vorgeschlagenen Mechanismen die Bildung von spontanen Platoons ermöglichen. Darüber hinaus profitierten die teilnehmenden Fahrzeuge mit dem auf verteilter Optimierung basierenden Ansatz und unter Verwendung kostensenkender Anreize unabhängig von der Platoon-Größe, dem Verkehrszustand und der Positionierung, mit Nutzenverbesserungen von 20% bis über 50% im Vergleich zur untersuchten Baseline. Bei zeitbasierten Anreizen waren die Ergebnisse uneinheitlich, wobei sich der Nutzen einiger Fahrzeuge verbesserte, bei einigen keine Veränderung eintrat und bei anderen eine Verschlechterung zu verzeichnen war. Daher wird die Verwendung solcher Anreize aufgrund ihrer mangelnden Pareto-Effizienz nicht empfohlen. Der kompensatorische und vollständig dezentralisierte Ansatz weißt einige Vorteile auf, aber die daraus resultierende Verbesserung war insgesamt vernachlässigbar. Die vorgestellten Mechanismen stellen einen neuartigen Ansatz zur Bildung von Platoons dar und geben einen aussagekräftigen Einblick in die Mechanik und Anwendbarkeit von Platoons. Dies schafft die Voraussetzungen für zukünftige Erweiterungen in der Planung, Konzeption und Implementierung effektiverer Infrastrukturen und Verkehrssysteme.Traffic problems have been on the rise corresponding with the increase in worldwide urbanisation and the number of vehicles per capita. Platoons, which are a formation of vehicles travelling close together, present themselves as a possible solution, as existing research indicates that they can contribute to better road usage, reduce fuel consumption and emissions and decongest bottlenecks faster. There are many aspects to be explored pertaining to the topic of platooning: safety, stability, communication, controllers and operations, all of which are necessary to bring platoons closer to use in everyday traffic. While extensive research has already made substantial strides in all the aforementioned fields, there is so far little work on the logical grouping of vehicles in platoons. Therefore, this work addresses the platoon formation problem, which has not been heavily researched, with existing examples being focused on large, freight vehicles travelling on highways. These cases find themselves on the strategic and tactical level of planning since they benefit from a large time horizon and the grouping can be optimised accordingly. The approaches presented here, however, are on the operational level, grouping and routing vehicles spontaneously and organically thanks to their distributed and decentralised nature. This creates so-called opportunistic platoons which could provide a promising premise for all networks given their flexibility. To this extent, this thesis presents two novel platoon forming algorithms: a distributed approach derived from classical routing problems, and a supplementary decentralised compensational approach. The latter uses automated negotiation to facilitate vehicles organising themselves in a platoon based on monetary exchanges. Considering that all traffic participants have a set of preferences, limitations and goals, the proposed system must ensure that any solution provided is acceptable and beneficial for the individual vehicles, outweighing any potential effort, cost and sacrifices. This is achieved by offering platooning vehicles some form of incentivisation, either cost reductions or traffic light prioritisation. To test the proposed algorithms, a traffic simulation was developed using real networks with realistic traffic demand. The traffic participants were transformed into agents and given the necessary functionality to build platoons and operate within them. The applicability and suitability of both approaches were investigated along with several other aspects pertaining to platoon operations such as size, traffic state, network positioning and incentivisation methods. The results indicate that the mechanisms proposed allow for spontaneous platoons to be created. Moreover, with the distributed optimisation-based approach and using cost-reducing incentives, participating vehicles benefited regardless of the platoon size, traffic state and positioning, with utility improvements ranging from 20% to over 50% compared to the studied baseline. For time-based incentives the results were mixed, with the utility of some vehicles improving, some seeing no change and for others, deteriorating. Therefore, the usage of such incentives would not be recommended due to their lack of Pareto-efficiency. The compensational and completely decentralised approach shows some benefits, but the resulting improvement was overall negligible. The presented mechanisms are a novel approach to platoon formation and provide meaningful insight into the mechanics and applicability of platoons. This sets the stage for future expansions into planning, designing and implementing more effective infrastructures and traffic systems
    • …
    corecore