49 research outputs found

    GNSS processing at CODE: status report

    Get PDF
    Since May 2003, the Center for Orbit Determination in Europe (CODE), one of the analysis centers of the International GNSS Service, has generated GPS and GLONASS products in a rigorous combined multi-system processing scheme, which promises the best possible consistency of the orbits of both systems. The resulting products, in particular the satellite orbits and clocks, are easily accessible by the user community. In the first part of this article, we focus on the generation of the combined global products at CODE, where we put emphasis not only on accuracy, but also on completeness. We study the impact of GLONASS on the CODE products, and the benefit of using them. Last, but not least, we introduce AGNES (Automated GNSS Network for Switzerland), a regional tracking network of small extensions (roughly 400km East-West, 200km North-South), which consequently tracks all GNSS satellites and analyzes their measurements using the CODE product

    Improving Reliability and Assessing Performance of Global Navigation Satellite System Precise Point Positioning Ambiguity Resolution

    Get PDF
    Conventional Precise Point Positioning (PPP) has always required a relatively long initialization period (few tens of minutes at least) for the carrier-phase ambiguities to converge to constant values and for the solution to reach its optimal precision. The classical PPP convergence period is primarily caused by the estimation of the carrier-phase ambiguity from the relatively noisy pseudoranges and the estimation of atmospheric delay. If the underlying integer nature of the ambiguity is known, it can be resolved, thereby reducing the convergence time of conventional PPP. To recover the underlying integer nature of the carrier-phase ambiguities, different strategies for mitigating the satellite and receiver dependent equipment delays have been developed, and products made publicly available to enable ambiguity resolution without any baseline restrictions. There has been limited research within the scope of interoperability of the products, combining the products to improve reliability and assessment of ambiguity resolution within the scope of being an integrity indicator. This study seeks to develop strategies to enable each of these and examine their feasibility. The advantage of interoperability of the different PPP ambiguity resolution (PPP-AR) products would be to permit the PPP user to transform independently generated PPP-AR products to obtain multiple fixed solutions of comparable precision and accuracy. The ability to provide multiple solutions would increase the reliability of the solution for, e.g., real-time processing: if there were an outage in the generation of the PPP-AR products, the user could instantly switch streams to a different provider. The satellite clock combinations routinely produced within the International GNSS Service (IGS) currently disregard that analysis centers (ACs) provide products which enable ambiguity resolution. Users have been expected to choose either an IGS product which is a combined product from multiple ACs or select an individual AC solution which provides products that enable PPP-AR. The goal of the novel research presented was to develop and test a robust satellite clock combination preserving the integer nature of the carrier-phase ambiguities at the user end. mm-level differences were noted, which was expected as the strength lies mainly in its reliability and stable median performance and the combined product is better than or equivalent to any single ACs product in the combination process. As have been shown in relative positioning and PPP-AR, ambiguity resolution is critical for enabling cm-level positioning. However, what if specifications where at the few dm-level, such as 10 cm and 20 cm horizontal what role does ambiguity resolution play? The role of ambiguity resolution relies primarily on what are the user specifications. If the user specifications are at the few cm-level, ambiguity resolution is an asset as it improves convergence and solution stability. Whereas, if the users specification is at the few dm-level, ambiguity resolution offers limited improvement over the float solution. If the user has the resources to perform ambiguity resolution, even when the specifications are at the few dm-level, it should be utilized

    Advancing the Solar Radiation Pressure Model for BeiDou-3 IGSO Satellites

    Get PDF
    In the absence of detailed surface information, empirical solar radiation pressure (SRP) models, such as the five-parameter Empirical CODE Orbit Model (ECOM1) and its extended version-ECOM2, are widely used for modeling SRP forces acting on GNSS satellites. This study shows that the orbits of BeiDou-3 Inclined Geosynchronous Orbit satellites (IGSOs) determined with the ECOM1 model suffer from systematic once-per-revolution radial orbit errors, which can be partly reduced by the ECOM2 model. To eliminate such orbit errors, the BeiDou-3 IGSO optical coefficients are solved by using an adjustable box-wing (ABW) model and then introduced into an a priori box-wing SRP model to enhance the ECOM1 model (ECOM1 + BW). In the ABW solution, in addition to satellite body and solar panels, the contributions of the communication payloads installed on BeiDou-3 IGSO ±X panels on the SRP are also considered, which markedly improves the stability of the optical coefficient estimates. The efficiency of the developed a priori box-wing model is demonstrated through eliminated once-per-revolution radial orbit errors and decreased day boundary discontinuities. However, the orbit solutions still show significant degradations during eclipse seasons. The results of the first yaw-attitude analysis for eclipsing BeiDou-3 IGSOs show that their yaw behaviors are the same as those of BeiDou-3 CAST (China Academy of Space Technology) MEOs (Medium Earth Orbit satellites), and have been well considered in the study. This rules out the possibility that attitude errors are the potential reason for the orbit deterioration. By introducing a once-per-revolution sine term in the Sun direction (Ds term) and keeping Ds active during the Earth’s shadow transitions to the ECOM1 + BW model, the orbit performance inside the eclipse seasons is significantly improved and can be comparable to that outside the eclipse seasons

    A Long-Term Broadcast Ephemeris Model for Extended Operation of GNSS Satellites

    Get PDF
    GNSS positioning relies on orbit and clock information, which is predicted on ground and transmitted by the individual satellites as part of their broadcast navigation message. The predictions are typically refreshed at least once per day and partitioned into short-arc ephemeris data sets covering a representative validity period of 0.5-4 h. For an increased autonomy of either the space or user segment, the capability to predict a GNSS satellite orbit over extended periods of up to two weeks is studied. A tailored force model for numerical orbit propagation is proposed that offers high accuracy but can still be used in real-time environments. Aside from Earth-orientation parameters, six state vector components and three empirical solar radiation pressure parameters are employed for each satellite and adjusted to past orbits. Using the Galileo constellation with its high-grade hydrogen maser clocks as an example, global average signal-in-space range errors of less than 25 m RMS and 3D position errors of less than about 50 m are demonstrated after two week predictions in 95% of all test cases over a half-year period. The autonomous orbit prediction model thus enables adequate quality for a rapid first fix or contingency navigation in case of lacking ground segment updates

    Desarrollo de algoritmos para el tratamiento de datos GNSS : su aplicación a los escenarios GPS modernizado y Galileo

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Sección Departamental de Física de la Tierra, Astronomía y Astrofísica I (Geofísica y Meteorología) (Astronomía y Geodesia), leída el 24-07-2012Nowadays, the major GNSS systems are the american GPS and the russian GLONASS, however, in a near future the european project Galileo and the chinesse system COMPASS will become part of the current GNSS scenario. These systems will transmit for the first time three different frequencies, giving place to a multi-system and multi-frequency scenario which will dramatically push the boundaries of the positioning techniques. Currently, one of the most studied positioning techniques is known as Precise Point Positioning (PPP), which is aimed at estimating precise receiver position from undifferenced GNSS code and carrier phase observations and precise satellite products. In this thesis, some new and original algorithms for static PPP have been developed, which are able to deal with the future multi-system and multifrequency GNSS observations. The new algorithms have been named MAP3. In the new approach, the least squares theory is applied twice to estimate the ionospheric delay, initial ambiguities and smoothed pseudodistances from undifferenced observations, which in turn are used to recover the receiver position and its clock offset. MAP3 provides position estimations with an accuracy of 2.5 cm after 2 hours observation and 7 mm in 1 day, being at the same level as other PPP programs and even better results are obtained with MAP3 in short observation periods. Moreover, MAP3 have provided some of the first results in positioning from GIOVE observations and GPC products. In addition, these algorithms have been applied in the analysis of the influence of ionospheric disturbances on the point positioning, concluding that the presence of a high ROT (Rate of TEC), observed at equatorial latitudes, reflects a significant degradation of the point positioning from dual-frequency observations.Actualmente, los únicos sistemas globales de navegación por satélites operativos son GPS y GLONASS, sin embargo, en un futuro cercano el proyecto europeo Galileo y el sistema chino COMPASS entrarán a formar parte del actual escenario GNSS. Estos sistemas emplearán por primera vez, tres frecuencias distintas, dando lugar a un escenario multi-frecuencia que revolucionará las técnicas de posicionamiento. Entre las técnicas actuales de posicionamiento con GNSS destaca el Posicionamiento Preciso Puntual (PPP), que consiste en determinar la posición de un receptor a partir de observaciones de código y fase no differenciadas y productos precisos. En este trabajo de tesis se han desarrollado unos nuevos y originales algoritmos para PPP estático, llamados MAP3, capaces de procesar observaciones GNSS multifrecuencia y multi-sistema del futuro escenario GNSS y determinar la posición de un receptor de forma precisa y exacta. Los algoritmos MAP3 se dividen en dos partes en las cuales se ha aplicado la teoría mínimos cuadrados y se han obtenido expresiones explícitas para estimar el retraso ionosférico, ambigüedades de fase inicial y pseudodistancias suavizadas, que se emplean para determinar la posición del receptor y el offset de su reloj. MAP3 proporciona una estimación de la posición con una exactitud de 2.5 cm tras 2 horas de observación y de 7 mm tras 24 h, resultados que mejoran los obtenidos hasta el momento con otros programas para PPP en periodos cortos de tiempo. Además, MAP3 han proporcionado los primeros resultados en el posicionamiento con observaciones GIOVE y productos del GPC. Por otro lado, estos algoritmos se han aplicado al análisis de los efectos de ciertas perturbaciones ionosféricas en el posicionamiento concluyendo que la presencia de un ROT (Rate of TEC) elevado, observado en latitudes ecuatoriales, refleja una degradación significativa del posicionamiento puntual con observaciones doble frecuencia.Unidad Deptal. de Astronomía y GeodesiaFac. de Ciencias MatemáticasTRUEunpu

    Establishment of GPS Reference Network in Ghana

    Get PDF
    The quest for the use of GNSS in developing countries is on the rise following the realization of its numerous advantages over the conventional methods of positioning, navigation and timing. Africa's attempt to harness this technology has made it imperative to investigate the regional problems associated with its implementation by its member states, which constitute the AFREF. This study goes beyond the establishment of a GNSS reference network in Ghana by investigating and finding solutions to some of the regional problems associated with its implementation. The problem of turbulent atmospheric conditions which includes the severe ionospheric fluctuations and the erratic tropospheric conditions coupled with the sparsely populated base stations has led to the development of a new concept of correction, the Corridor Correction, which is able to correct the atmospheric effect comparable with the established concepts like the Virtual Reference Station, VRS, Flaechen-Korrektur-Parameter, FKP and Master Auxiliary Concept, MAC. In spite of the ionospheric problems in the equatorial region, the number of single frequency receivers in use for precise positioning is on the increase as compared with the relatively few multiple frequency receivers. This has necessitated the investigation of the code-plus-carrier processing approach which uses the idea of opposite signs of the propagation delay of the ionosphere in the code and carrier signals to eliminate the ionospheric delay, which normally requires dual frequency receivers to do same. This improved processing technique has led to the achievement of an accuracy of 5 cm with single frequency over a distance of 194 km. Sub-decimeter is generally achieved after 12 hours and 18 hours of observation for a distance of 200 km and 1200 km respectively with this technique as shown in this study. In addition to the improved processing techniques, the ambiguity that characterizes the use of mean-sea-level for the definition of vertical references as a result of either the sea level change or movement of the earth crust can be resolved with the use of GNSS which is independent of these two phenomena. This is achieved by collocating a GPS base station at the reference tide gauge located at Takoradi. The orthometric height derived from the tide gauge and the corresponding ellipsoidal height at the collocated GNSS base station is used to determine the local quasi-geoid. This is compared with the global geoid derived from EGM96, the global model from NGA, to obtain a difference that can be applied as a correction factor to obtain orthometric heights. The release of EGM2008 which has undergone remarkable improvement over EGM96 in terms of resolution makes it important to investigate into how it can be used to improve the orthometric height determination using ellipsoidal heights from GNSS observation. This can be achieved by following up what has been derived with EGM96 at the Takoradi tide gauge with this newly released EGM2008. To be able to move through a smooth transition from the existing geodetic reference system based on the War Office Ellipsoid to the newly established system based on the geocentric ITRF05, a set of seven parameter transformation has been derived for the project area, the Golden Triangle of Ghana.Das Bestreben GNSS in Entwicklungsländern zu nutzen nimmt stetig zu, da man die zahlreichen Vorteile gegenüber herkömmlichen Verfahren der Positionierung, Navigation und Zeitübertragung erkannt hat. Afrikas Versuch, diese Technologie zu nutzen, gebietet es, die regionalen Probleme im Zusammenhang mit der Umsetzung durch die AFREF Mitgliedsstaaten zu untersuchen. Diese Abhandlung geht über die Errichtung eines GNSS Referenznetzwerks in Ghana hinaus, indem sie Lösungen zu einigen regionalen Problemen in der Umsetzung aufzeigt und untersucht. Das Problem der turbulenten Atmosphäre, die schweren ionospärische Fluktuationen und sprunghafte troposphärische Bedingungen verbunden mit den sehr spärlich gestreuten Referenzstationen, hat zu der Entwicklung eines neuen Konzeptes von Korrekturverfahren, der Corridor Correction, geführt, die es ermöglicht, atmosphärische Einflüsse ähnlich wie etablierte Verfahren wie Virtual Reference Station, VRS, Flaechen-Korrektur-Paramter, FKP and Master Auxiliary Concept, MAC, zu korrigieren. Trotz der Probleme mit der Ionosphäre in der Äquatorregion, übersteigt die Anzahl der Ein-Frequenz-Empfänger für die präzise Positionierung die der relativ wenigen Mehrfrequenzempfänger. Dies machte die Untersuchung des Code-plus-Carrier Prozessierungsansatzes notwendig. Dieser nutzt den Effekt von unterschiedlichen Vorzeichen bei der Änderung der Ausbreitungsgeschwindigkeit von Code- und Trägersignalen durch die Ionosphäre um den ionosphärischen Effekt zu eliminieren, was in der herkömmlichen Prozessierung Zweifrequenzempfänger benötigt. Diese verbesserte Prozessierungstechnik hat zur Erzielung von Genauigkeiten von 5 cm mit Einfrequenzempfängern über eine Basislinienlänge von 194 km geführt. Damit werden im Allgemeinen Sub-Dezimeter Genauigkeiten nach 12 Stunden Beobachtungsdauer für Basislinienlängen von 200 km bzw. 18 Stunden für Basislinien von 1200 km erreicht, wie diese Abhandlung zeigt. Zusätzlich zu den oben genannten Verbesserungen in der Prozessierung, wird eine Methode aufgezeigt, die die Unsicherheit durch Meeresspiegeländerungen oder Bewegungen der Erdkruste, die der Gebrauch des mittleren Meeresspiegels als Definition des vertikalen Datums in sich birgt, durch den Gebrauch von GNSS, das von diesen beiden Phänomenen unberührt ist. Dies wird dadurch erreicht, dass GPS Basisstationen an Orten mit einer Pegelstation eingerichtet werden. Die orthometrische Höhe des Referenzpegels und die ellipsoidische Höhe der Basisstation werden dann zur Bestimmung eines lokalen Geoids verwendet. Das in dieser Abhandlung verwendete lokale Geoid ist an das globale Geoid angeschlossen worden, das aus dem EGM96, dem Modell der NGA, abgeleitet ist. Die Veröffentlichung des EGM2008, das gegenüber dem EGM96 im Hinblick auf die Auflösung erfahren hat bedeutende Verbesserungen, erfordert es, zu untersuchen, wie es Ghana zur Bestimmung von orthometrischen Höhen durch GNSS Beobachtungen nutzen kann. Das kann durch eine Weiterentwicklung des Ansatzes erreicht werden, der in dieser Studie schon mit dem EGM96 für Ghana bei Takoradi begonnen wurde. Das hierbei aufgebaute GNSS Referenznetzwerk wurde an den Pegel von Takoradi angeschlossen, einem der ältesten Level auf dem afrikanischen Kontinent. Um einen glatten Übergang vom vorhandenen Referenzsystem, das auf dem War Office Ellipsoid basiert, zum neuen, auf dem ITRF05 basierendem System zu ermöglichen, wurde ein Satz von sieben Transformationsparametern abgeleitet, die auf den Messungen im Projektgebiet „Goldenes Dreieck“ in Ghana basieren

    Precise Point Positioning Augmentation for Various Grades of Global Navigation Satellite System Hardware

    Get PDF
    The next generation of low-cost, dual-frequency, multi-constellation GNSS receivers, boards, chips and antennas are now quickly entering the market, offering to disrupt portions of the precise GNSS positioning industry with much lower cost hardware and promising to provide precise positioning to a wide range of consumers. The presented work provides a timely, novel and thorough investigation into the positioning performance promise. A systematic and rigorous set of experiments has been carried-out, collecting measurements from a wide array of low-cost, dual-frequency, multi-constellation GNSS boards, chips and antennas introduced in late 2018 and early 2019. These sensors range from dual-frequency, multi-constellation chips in smartphones to stand-alone chips and boards. In order to be comprehensive and realistic, these experiments were conducted in a number of static and kinematic benign, typical, suburban and urban environments. In terms of processing raw measurements from these sensors, the Precise Point Positioning (PPP) GNSS measurement processing mode was used. PPP has become the defacto GNSS positioning and navigation technique for scientific and engineering applications that require dm- to cm-level positioning in remote areas with few obstructions and provides for very efficient worldwide, wide-array augmentation corrections. To enhance solution accuracy, novel contributions were made through atmospheric constraints and the use of dual- and triple-frequency measurements to significantly reduce PPP convergence period. Applying PPP correction augmentations to smartphones and recently released low-cost equipment, novel analyses were made with significantly improved solution accuracy. Significant customization to the York-PPP GNSS measurement processing engine was necessary, especially in the quality control and residual analysis functions, in order to successfully process these datasets. Results for new smartphone sensors show positioning performance is typically at the few dm-level with a convergence period of approximately 40 minutes, which is 1 to 2 orders of magnitude better than standard point positioning. The GNSS chips and boards combined with higher-quality antennas produce positioning performance approaching geodetic quality. Under ideal conditions, carrier-phase ambiguities are resolvable. The results presented show a novel perspective and are very promising for the use of PPP (as well as RTK) in next-generation GNSS sensors for various application in smartphones, autonomous vehicles, Internet of things (IoT), etc

    Precise Orbit Determination of CubeSats

    Get PDF
    CubeSats are faced with some limitations, mainly due to the limited onboard power and the quality of the onboard sensors. These limitations significantly reduce CubeSats' applicability in space missions requiring high orbital accuracy. This thesis first investigates the limitations in the precise orbit determination of CubeSats and next develops algorithms and remedies to reach high orbital and clock accuracies. The outputs would help in increasing CubeSats' applicability in future space missions

    Global Geodetic Observing System in Poland 2019–2022

    Get PDF
    This paper summarizes the contribution of Polish scientific units to the development of the Global Geodetic Observing System (GGOS) in recent years. We discuss the issues related to the integration of space geodetic techniques and co-location in space onboard Global Navigation Satellites Systems (GNSS) and Low Earth Orbiters (LEO), as well as perspectives introduced by the new European Space Agency’s (ESA) mission GENESIS. We summarize recent developments in terms of the European Galileo system and its contribution to satellite geodesy and general relativity, as well as ESA’s recent initiative – Moonlight to establish a satellite navigation and communication system for the Moon. Recent progress in troposphere delay modeling in Satellite Laser Ranging (SLR) allowed for better handling of systematic errors in SLR, such as range biases and tropospheric biases. We discuss enhanced tropospheric delay models for SLR based on numerical weather models with empirical corrections, which improve the consistency between space geodetic parameters derived using different techniques, such as SLR, GNSS, and Very Long Baseline Interferometry (VLBI). Finally, we review recent progress in the development of Polish GGOS scientific infrastructure in the framework of the European Plate Observing System project EPOS-PL¸

    GNSS precise point positioning :the enhancement with GLONASS

    Get PDF
    PhD ThesisPrecise Point Positioning (PPP) provides GNSS navigation using a stand-alone receiver with no base station. As a technique PPP suffers from long convergence times and quality degradation during periods of poo satellite visibility or geometry. Many applications require reliable realtime centimetre level positioning with worldwide coverage, and a short initialisation time. To achieve these goals, this thesis considers the use of GLONASS in conjunction with GPS in kinematic PPP. This increases the number of satellites visible to the receiver, improving the geometry of the visible satellite constellation. To assess the impact of using GLONASS with PPP, it was necessary to build a real time mode PPP program. pppncl was constructed using a combination of Fortran and Python to be capable of processing GNSS observations with precise satellite ephemeris data in the standardised RINEX and SP3 formats respectively. pppncl was validated in GPS mode using both staticsites and kinematic datasets.In GPS only mode,one sigma accuracy of 6.4mm and 13mm in the horizontal and vertical respectively for 24h static positioning was seen. Kinematic horizontal and vertical accuracies of 21mm and 33mm were demonstrated. pppncl was extended to assess the impact of using GLONASS observations in addi- tion to GPS instatic and kinematic PPP. Using ESA and Veripos Apex G2 satel- lite orbit and clock products,the average time until 10cm 1D static accuracy was achieved, over arange of globally distributed sites, was seen to reduce by up to 47%. Kinematic positioning was tested for different modes of transport using real world datasets. GPS/GLONAS SPPP reduced the convergence time to decimetre accuracy by up to a factor of three. Positioning was seen to be more robust in comparison to GPS only PPP, primarily due to cycle slips not being present on both satellite systems on the occasions when they occurred,and the reduced impact of undetected outliersEngineering and Physical Sciences Research Council, Verip os/Subsea
    corecore