21,441 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Automated Home Oxygen Delivery for Patients with COPD and Respiratory Failure: A New Approach

    Get PDF
    Long-term oxygen therapy (LTOT) has become standard care for the treatment of patients with chronic obstructive pulmonary disease (COPD) and other severe hypoxemic lung diseases. The use of new portable O-2 concentrators (POC) in LTOT is being expanded. However, the issue of oxygen titration is not always properly addressed, since POCs rely on proper use by patients. The robustness of algorithms and the limited reliability of current oximetry sensors are hindering the effectiveness of new approaches to closed-loop POCs based on the feedback of blood oxygen saturation. In this study, a novel intelligent portable oxygen concentrator (iPOC) is described. The presented iPOC is capable of adjusting the O-2 flow automatically by real-time classifying the intensity of a patient's physical activity (PA). It was designed with a group of patients with COPD and stable chronic respiratory failure. The technical pilot test showed a weighted accuracy of 91.1% in updating the O-2 flow automatically according to medical prescriptions, and a general improvement in oxygenation compared to conventional POCs. In addition, the usability achieved was high, which indicated a significant degree of user satisfaction. This iPOC may have important benefits, including improved oxygenation, increased compliance with therapy recommendations, and the promotion of PA
    corecore