5,963 research outputs found

    The image torque operator: A new tool for mid-level vision

    Get PDF
    Contours are a powerful cue for semantic image understanding. Objects and parts of objects in the image are delineated from their surrounding by closed contours which make up their boundary. In this paper we introduce a new bottom-up visual operator to capture the concept of closed contours, which we call the ’Torque ’ operator. Its computation is inspired by the mechanical definition of torque or moment of force, and applied to image edges. The torque operator takes as input edges and computes over regions of different size a measure of how well the edges are aligned to form a closed, convex contour. We explore fundamental properties of this measure and demonstrate that it can be made a useful tool for visual attention, segmentation, and boundary edge detection by verifying its benefits on these applications. 1

    THE IMAGE TORQUE OPERATOR FOR MID-LEVEL VISION: THEORY AND EXPERIMENT

    Get PDF
    A problem central to visual scene understanding and computer vision is to extract semantically meaningful parts of images. A visual scene consists of objects, and the objects and parts of objects are delineated from their surrounding by closed contours. In this thesis a new bottom-up visual operator, called the Torque operator, which captures the concept of closed contours is introduced. Its computation is inspired by the mechanical definition of torque or moment of force, and applied to image edges. It takes as input edges and computes over regions of different size a measure of how well the edges are aligned to form a closed, convex contour. The torque operator is by definition scale independent, and can be seen as an operator of mid-level vision that captures the organizational concept of 'closure' and grouping mechanism of edges. In this thesis, fundamental properties of the torque measure are studied, and experiments are performed to demonstrate and verify that it can be made a useful tool for a variety of applications, including visual attention, segmentation, and boundary edge detection

    Assistance strategies for robotized laparoscopy

    Get PDF
    Robotizing laparoscopic surgery not only allows achieving better accuracy to operate when a scale factor is applied between master and slave or thanks to the use of tools with 3 DoF, which cannot be used in conventional manual surgery, but also due to additional informatic support. Relying on computer assistance different strategies that facilitate the task of the surgeon can be incorporated, either in the form of autonomous navigation or cooperative guidance, providing sensory or visual feedback, or introducing certain limitations of movements. This paper describes different ways of assistance aimed at improving the work capacity of the surgeon and achieving more safety for the patient, and the results obtained with the prototype developed at UPC.Peer ReviewedPostprint (author's final draft

    Robotic control and inspection verification

    Get PDF
    Three areas of possible commercialization involving robots at the Kennedy Space Center (KSC) are discussed: a six degree-of-freedom target tracking system for remote umbilical operations; an intelligent torque sensing end effector for operating hand valves in hazardous locations; and an automatic radiator inspection device, a 13 by 65 foot robotic mechanism involving completely redundant motors, drives, and controls. Aspects concerning the first two innovations can be integrated to enable robots or teleoperators to perform tasks involving orientation and panal actuation operations that can be done with existing technology rather than waiting for telerobots to incorporate artificial intelligence (AI) to perform 'smart' autonomous operations. The third robot involves the application of complete control hardware redundancy to enable performance of work over and near expensive Space Shuttle hardware. The consumer marketplace may wish to explore commercialization of similiar component redundancy techniques for applications when a robot would not normally be used because of reliability concerns

    Shear-invariant Sliding Contact Perception with a Soft Tactile Sensor

    Full text link
    Manipulation tasks often require robots to be continuously in contact with an object. Therefore tactile perception systems need to handle continuous contact data. Shear deformation causes the tactile sensor to output path-dependent readings in contrast to discrete contact readings. As such, in some continuous-contact tasks, sliding can be regarded as a disturbance over the sensor signal. Here we present a shear-invariant perception method based on principal component analysis (PCA) which outputs the required information about the environment despite sliding motion. A compliant tactile sensor (the TacTip) is used to investigate continuous tactile contact. First, we evaluate the method offline using test data collected whilst the sensor slides over an edge. Then, the method is used within a contour-following task applied to 6 objects with varying curvatures; all contours are successfully traced. The method demonstrates generalisation capabilities and could underlie a more sophisticated controller for challenging manipulation or exploration tasks in unstructured environments. A video showing the work described in the paper can be found at https://youtu.be/wrTM61-pieUComment: Accepted in ICRA 201

    Results of a sub-scale model rotor icing test

    Get PDF
    A heavily instrumented sub-scale model of a helicopter main rotor was tested in the NASA Lewis Research Center Icing Research Tunnel (IRT) in September and November 1989. The four-bladed main rotor had a diameter of 1.83 m (6.00 ft) and the 0.124 m (4.9 in) chord rotor blades were specially fabricated for this experiment. The instrumented rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The model rotor was exposed to a range of icing conditions that included variations in temperature, liquid water content, and median droplet diameter, and was operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed) and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracings, and ice molds. The sensitivity of the model rotor to the test parameters, is given, and the result to theoretical predictions are compared. Test data quality was excellent, and ice accretion prediction methods and rotor performance prediction methods (using published icing lift and drag relationships) reproduced the performance trends observed in the test. Adjustments to the correlation coefficients to improve the level of correlation are suggested
    • …
    corecore