4 research outputs found

    The ILLTP Library for Intuitionistic Linear Logic

    Get PDF
    Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-established method for measuring their performance. However, the availability of such libraries for non-classical logics is very limited. In this work we propose a library for benchmarking Girard's (propositional) intuitionistic linear logic. For a quick bootstrapping of the collection of problems, and for discussing the selection of relevant problems and understanding their meaning as linear logic theorems, we use translations of the collection of Kleene's intuitionistic theorems in the traditional monograph "Introduction to Metamathematics". We analyze four different translations of intuitionistic logic into linear logic and compare their proofs using a linear logic based prover with focusing. In order to enhance the set of problems in our library, we apply the three provability-preserving translations to the propositional benchmarks in the ILTP Library. Finally, we generate a comprehensive set of reachability problems for Petri nets and encode such problems as linear logic sequents, thus enlarging our collection of problems

    Resourceful program synthesis from graded linear types

    Get PDF
    Linear types provide a way to constrain programs by specifying that some values must be used exactly once. Recent work on graded modal types augments and refines this notion, enabling fine-grained, quantitative specification of data use in programs. The information provided by graded modal types appears to be useful for type-directed program synthesis, where these additional constraints can be used to prune the search space of candidate programs. We explore one of the major implementation challenges of a synthesis algorithm in this setting: how does the synthesis algorithm efficiently ensure that resource constraints are satisfied throughout program generation? We provide two solutions to this resource management problem, adapting Hodas and Miller’s input-output model of linear context management to a graded modal linear type theory. We evaluate the performance of both approaches via their implementation as a program synthesis tool for the programming language Granule, which provides linear and graded modal typing
    corecore