598 research outputs found

    How functional programming mattered

    Get PDF
    In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper arguing convincingly ‘why functional programming matters’. More than two decades have passed. Has functional programming really mattered? Our answer is a resounding ‘Yes!’. Functional programming is now at the forefront of a new generation of programming technologies, and enjoying increasing popularity and influence. In this paper, we review the impact of functional programming, focusing on how it has changed the way we may construct programs, the way we may verify programs, and fundamentally the way we may think about programs

    Towards correct-by-construction product variants of a software product line: GFML, a formal language for feature modules

    Full text link
    Software Product Line Engineering (SPLE) is a software engineering paradigm that focuses on reuse and variability. Although feature-oriented programming (FOP) can implement software product line efficiently, we still need a method to generate and prove correctness of all product variants more efficiently and automatically. In this context, we propose to manipulate feature modules which contain three kinds of artifacts: specification, code and correctness proof. We depict a methodology and a platform that help the user to automatically produce correct-by-construction product variants from the related feature modules. As a first step of this project, we begin by proposing a language, GFML, allowing the developer to write such feature modules. This language is designed so that the artifacts can be easily reused and composed. GFML files contain the different artifacts mentioned above.The idea is to compile them into FoCaLiZe, a language for specification, implementation and formal proof with some object-oriented flavor. In this paper, we define and illustrate this language. We also introduce a way to compose the feature modules on some examples.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301

    Software Architecture of Code Analysis Frameworks Matters: The Frama-C Example

    Full text link
    Implementing large software, as software analyzers which aim to be used in industrial settings, requires a well-engineered software architecture in order to ease its daily development and its maintenance process during its lifecycle. If the analyzer is not only a single tool, but an open extensible collaborative framework in which external developers may develop plug-ins collaborating with each other, such a well designed architecture even becomes more important. In this experience report, we explain difficulties of developing and maintaining open extensible collaborative analysis frameworks, through the example of Frama-C, a platform dedicated to the analysis of code written in C. We also present the new upcoming software architecture of Frama-C and how it aims to solve some of these issues.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Sound and Precise Malware Analysis for Android via Pushdown Reachability and Entry-Point Saturation

    Full text link
    We present Anadroid, a static malware analysis framework for Android apps. Anadroid exploits two techniques to soundly raise precision: (1) it uses a pushdown system to precisely model dynamically dispatched interprocedural and exception-driven control-flow; (2) it uses Entry-Point Saturation (EPS) to soundly approximate all possible interleavings of asynchronous entry points in Android applications. (It also integrates static taint-flow analysis and least permissions analysis to expand the class of malicious behaviors which it can catch.) Anadroid provides rich user interface support for human analysts which must ultimately rule on the "maliciousness" of a behavior. To demonstrate the effectiveness of Anadroid's malware analysis, we had teams of analysts analyze a challenge suite of 52 Android applications released as part of the Auto- mated Program Analysis for Cybersecurity (APAC) DARPA program. The first team analyzed the apps using a ver- sion of Anadroid that uses traditional (finite-state-machine-based) control-flow-analysis found in existing malware analysis tools; the second team analyzed the apps using a version of Anadroid that uses our enhanced pushdown-based control-flow-analysis. We measured machine analysis time, human analyst time, and their accuracy in flagging malicious applications. With pushdown analysis, we found statistically significant (p < 0.05) decreases in time: from 85 minutes per app to 35 minutes per app in human plus machine analysis time; and statistically significant (p < 0.05) increases in accuracy with the pushdown-driven analyzer: from 71% correct identification to 95% correct identification.Comment: Appears in 3rd Annual ACM CCS workshop on Security and Privacy in SmartPhones and Mobile Devices (SPSM'13), Berlin, Germany, 201
    • …
    corecore