2,548 research outputs found

    The TREC2001 video track: information retrieval on digital video information

    Get PDF
    The development of techniques to support content-based access to archives of digital video information has recently started to receive much attention from the research community. During 2001, the annual TREC activity, which has been benchmarking the performance of information retrieval techniques on a range of media for 10 years, included a ”track“ or activity which allowed investigation into approaches to support searching through a video library. This paper is not intended to provide a comprehensive picture of the different approaches taken by the TREC2001 video track participants but instead we give an overview of the TREC video search task and a thumbnail sketch of the approaches taken by different groups. The reason for writing this paper is to highlight the message from the TREC video track that there are now a variety of approaches available for searching and browsing through digital video archives, that these approaches do work, are scalable to larger archives and can yield useful retrieval performance for users. This has important implications in making digital libraries of video information attainable

    Computer Center Bulletin / July 5, 1990

    Get PDF
    This publication is published as required and is written by members of the staff, W. R. Church Computer Cente

    Elementary mathematics teacher training via a programming language.

    Get PDF

    Res2Net: A New Multi-scale Backbone Architecture

    Full text link
    Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/.Comment: 11 pages, 7 figure

    Quantum autoencoders via quantum adders with genetic algorithms

    Full text link
    The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between approximate quantum adders and quantum autoencoders. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoencoders via genetic algorithms. Our approach opens a different path for the design of quantum autoencoders in controllable quantum platforms
    • …
    corecore