1,040 research outputs found

    The Microsoft 2017 Conversational Speech Recognition System

    Full text link
    We describe the 2017 version of Microsoft's conversational speech recognition system, in which we update our 2016 system with recent developments in neural-network-based acoustic and language modeling to further advance the state of the art on the Switchboard speech recognition task. The system adds a CNN-BLSTM acoustic model to the set of model architectures we combined previously, and includes character-based and dialog session aware LSTM language models in rescoring. For system combination we adopt a two-stage approach, whereby subsets of acoustic models are first combined at the senone/frame level, followed by a word-level voting via confusion networks. We also added a confusion network rescoring step after system combination. The resulting system yields a 5.1\% word error rate on the 2000 Switchboard evaluation set

    Building competitive direct acoustics-to-word models for English conversational speech recognition

    Full text link
    Direct acoustics-to-word (A2W) models in the end-to-end paradigm have received increasing attention compared to conventional sub-word based automatic speech recognition models using phones, characters, or context-dependent hidden Markov model states. This is because A2W models recognize words from speech without any decoder, pronunciation lexicon, or externally-trained language model, making training and decoding with such models simple. Prior work has shown that A2W models require orders of magnitude more training data in order to perform comparably to conventional models. Our work also showed this accuracy gap when using the English Switchboard-Fisher data set. This paper describes a recipe to train an A2W model that closes this gap and is at-par with state-of-the-art sub-word based models. We achieve a word error rate of 8.8%/13.9% on the Hub5-2000 Switchboard/CallHome test sets without any decoder or language model. We find that model initialization, training data order, and regularization have the most impact on the A2W model performance. Next, we present a joint word-character A2W model that learns to first spell the word and then recognize it. This model provides a rich output to the user instead of simple word hypotheses, making it especially useful in the case of words unseen or rarely-seen during training.Comment: Submitted to IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 201
    • …
    corecore