2 research outputs found

    Multi-Agent Coordination and Control under Information Asymmetry with Applications to Collective Load Transport

    Get PDF
    abstract: Coordination and control of Intelligent Agents as a team is considered in this thesis. Intelligent agents learn from experiences, and in times of uncertainty use the knowl- edge acquired to make decisions and accomplish their individual or team objectives. Agent objectives are defined using cost functions designed uniquely for the collective task being performed. Individual agent costs are coupled in such a way that group ob- jective is attained while minimizing individual costs. Information Asymmetry refers to situations where interacting agents have no knowledge or partial knowledge of cost functions of other agents. By virtue of their intelligence, i.e., by learning from past experiences agents learn cost functions of other agents, predict their responses and act adaptively to accomplish the team’s goal. Algorithms that agents use for learning others’ cost functions are called Learn- ing Algorithms, and algorithms agents use for computing actuation (control) which drives them towards their goal and minimize their cost functions are called Control Algorithms. Typically knowledge acquired using learning algorithms is used in con- trol algorithms for computing control signals. Learning and control algorithms are designed in such a way that the multi-agent system as a whole remains stable during learning and later at an equilibrium. An equilibrium is defined as the event/point where cost functions of all agents are optimized simultaneously. Cost functions are designed so that the equilibrium coincides with the goal state multi-agent system as a whole is trying to reach. In collective load transport, two or more agents (robots) carry a load from point A to point B in space. Robots could have different control preferences, for example, different actuation abilities, however, are still required to coordinate and perform load transport. Control preferences for each robot are characterized using a scalar parameter θ i unique to the robot being considered and unknown to other robots. With the aid of state and control input observations, agents learn control preferences of other agents, optimize individual costs and drive the multi-agent system to a goal state. Two learning and Control algorithms are presented. In the first algorithm(LCA- 1), an existing work, each agent optimizes a cost function similar to 1-step receding horizon optimal control problem for control. LCA-1 uses recursive least squares as the learning algorithm and guarantees complete learning in two time steps. LCA-1 is experimentally verified as part of this thesis. A novel learning and control algorithm (LCA-2) is proposed and verified in sim- ulations and on hardware. In LCA-2, each agent solves an infinite horizon linear quadratic regulator (LQR) problem for computing control. LCA-2 uses a learning al- gorithm similar to line search methods, and guarantees learning convergence to true values asymptotically. Simulations and hardware implementation show that the LCA-2 is stable for a variety of systems. Load transport is demonstrated using both the algorithms. Ex- periments running algorithm LCA-2 are able to resist disturbances and balance the assumed load better compared to LCA-1.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Modelling and Inverse Problems of Control for Distributed Parameter Systems; Proceedings of IFIP(W.G. 7.2)-IIASA Conference, July 24-28, 1989

    Get PDF
    The techniques of solving inverse problems that arise in the estimation and control of distributed parameter systems in the face of uncertainty as well as the applications of these to mathematical modelling for problems of applied system analysis (environmental issues, technological processes, biomathematical models, mathematical economy and other fields) are among the major topics of research at the Dynamic Systems Project of the Systems and Decision Sciences (SDS) Program at IIASA. In July 1989 the SDS Program was a coorganizer of a regular IFIP (WG 7.2) conference on Modelling and Inverse Problems of Control for Distributed Parameter Systems that was held at IIASA, and was attended by a number of prominent theorists and practitioners. One of the main purpose of this meeting was to review recent developments and perspectives in this field. The proceedings are presented in this volume
    corecore