6 research outputs found

    Model-Based Engineering for the support of Models of Computation: The Cometa Approach

    Get PDF
    The development of Real-Time Embedded Systems (RTES) increasingly requires the integration of several parts with different purposes. Consequently, the heterogeneous appearance of such systems creates a need to manage their growing complexity mainly due to the difficulty to interconnect the different parts composing them. Model-Based Engineering (MBE) has significantly participated in recent decades to find solutions in terms of methodologies and technical support tailored to the design of RTES. Indeed, several models are used to represent different aspects of the system. However, the interconnection of different modeling paradigms is still a difficult challenge. The handling of such problems requires a clear definition of the execution and interconnection semantics of the different models composing the system. Indeed, the abstraction of the execution semantics of machines or Models of Computation (MoC) can highlight properties for the whole system’s execution. In this paper, we propose an approach that captures these semantics at the earliest modeling phases with the aim of exhibiting properties that ease the design space exploration and performance analysis of systems. Our approach extends the Modeling and Analysis of Real-Time Embedded Systems profile (MARTE) by providing means to express communication semantics of models. We also review existing approaches for defining such execution semantics

    Security in Open Model Software with Hardware Virtualisation – The Railway Control System Perspective

    Get PDF
    Using the openETCS initiative as a starting point, we describe how open software can be applied in combination with platform-specific, potentially closed source extensions, in the development, verification, validation and certification of safety-critical railway control systems. We analyse the safety and security threats presented by this approach and discuss conventional operating system partitioning mechanisms, as well as virtualisation methods with respect to their potential to overcome these problems. Furthermore, we advocate a shift from open source to open models, in order to increase the development efficiency of combined open and proprietary solutions

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Nutzerfreundliche Modellierung mit hybriden Systemen zur symbolischen Simulation in CLP

    Get PDF
    Die Dissertation beinhaltet die Sprachen MODEL-HS und VYSMO zur modularen, deklarativen Beschreibung hybrider Systeme, die dem Nachweis zeit- und sicherheitskritischer Eigenschaften für die symbolische Simulation in CLP dienen. Zum Erlangen sprachtheoretischer Erkenntnisse wie Entscheidbarkeit wurden hybride Systeme neu unter formal nachweisbaren Akzeptanzbedingungen definiert, welche durch praktische Beispiele belegt sind. Weitere Ergebnisse sind eine neue Klassifikation hybrider Systeme, ein Werkzeug ROSSY, Anfragebeschreibungen und deren Transformation in temporal-logische Ausdrücke, Anfragemasken und Anwendungen für Studiensysteme und parallele Programme.The dissertation includes the languages MODEL-HS and VYSMO for modular, declarative description of hybrid systems that serve the proof of time- and safety-critical properties for symbolic simulation in CLP. For coming to language-theoretical conclusions like decidability hybrid systems are newly defined under acceptance conditions that can be formally proved and for which practical examples bear witness. A new classification of hybrid systems, a tool ROSSY, query descriptions and their transformation into temporal-logic expressions, query forms and applications for study systems and parallel programs are further results

    Test automation for hybrid systems

    Full text link

    Requirements Specification, Behavioral Specification and Checking of object-oriented Interlocking Systems using Multi-Object Logics, UML State Machines and Multi-Object Checking

    Get PDF
    Rechner haben durch ihre Programmierbarkeit und ihre Leistungsfähigkeit in nahezu sämtliche Bereiche des täglichen Lebens Einzug gehalten. Für den Einsatz rechnergestützter Systeme in sicherheitskritischen Umgebungen ist ein Nachweis für die korrekte Funktion von Hard- und Software zu erbringen. Unter dem Gesichtspunkt der Wirtschaftlichkeit erfordert die Entwicklung sicherheitskritischer Systeme den Einsatz automatisierbarer Verfahren, die diesen Nachweis unterstützen. Während relevante Normen die Anwendung formaler und damit automatisierbarer Verfahren empfehlen, existieren keinerlei Kriterien, welche Formalismen wie adäquat oder gar effizient eingesetzt werden können. Universelle Beschreibungssprachen wie die Unified Modeling Language (UML) erfahren durch die hohe Verfügbarkeit von Entwicklungswerkzeugen zunehmende Verbreitung, können den Anforderungen an Formalität und Verifikationsunterstützung jedoch nicht nachkommen. In der vorliegenden Arbeit wird eine Methodik zur Unterstützung des Entwicklungsprozesses sicherheitskritischer Systeme an einem Beispiel aus der Leit- und Sicherungstechnik im Eisenbahnwesen entwickelt. Die Methodik greift dabei Darstellungskonzepte der UML geeignet auf, so dass vorhandene Entwicklungswerkzeuge weiterhin Verwendung finden können. Die vorgestellte Methodik umfasst die Formalisierung der funktionalen Anforderungen in Formeln in der Multi-Objektlogik D1, die über mehrfach erweiterten Kripke-Strukturen interpretiert werden. Mehrfach erweiterte Kripke-Strukturen bilden ebenfalls die Grundlage für kommunizierende Zustandsmaschinen, die durch Zerlegung aus UML-Zustandsmaschinen generiert werden können. Durch die gemeinsame Basis von Anforderungs- und Verhaltensspezifikation wird die Anwendung des effizienten, automatisierbaren Multi-Object Checking Verfahrens zur Verifikation möglich. Im Rahmen der vorliegenden Arbeit wurde dieses Verfahren um einen Mechanismus zur Generierung von Fehlerszenarien erweitert. Dieser findet sowohl bei der Verifikation zur Fehlerlokalisation im Modell als auch bei der Validation zur Generierung von Testfällen Anwendung, so dass nicht nur die Verifikation sondern auch die Validation geeignet unterstützt werden. Die Anwendbarkeit der Methodik wird an einem Fallbeispiel, der Entwicklung einer Stellwerkslogik, demonstriert.Due to their programmability and their high capabilities, computers have entered almost all areas of everyday life. In order to use computer-based systems in a safety-critical environment, the proper function of hardware and software has to be certified. For economic reasons, the development of safety-critical systems requires automation providing such evidence. Whereas relevant norms recommend the application of formal and for this reason automatable methods, criteria regarding how to apply which formalism adequately or even efficiently do not exist yet. As a result of their large amount of available development tools, modeling languages like the Unified Modeling Language (UML) have become more and more popular. However, the UML does not meet the requirements as to formality or as to verification support. In this thesis, a methodology to support the development process of safety-critical systems is developed, using an example of the operation and control technology in railway systems. The methodology reuses UML concepts in such a way that existing development tools can be applied. The provided methodology includes the formalization of functional requirements as Multi-Object Logic D1 formulas. These formulas are interpreted over several times extended Kripke structures which are the basis for communicating state machines. As UML state machines can be decomposed into communicating state machines, UML state machines become applicable in the behavior specification phase. Due to the common basis of the requirements and the behavioral specification, the Multi-Object Checking procedure can be utilized for verification. In this thesis, the Multi-Object Checking procedure is extended by a scenario generation feature in case a Multi-Object Checking property does not hold. This feature can be applied both to verification for fault localization in the model and to validation for test case generation. The applicability of the methodology is demonstrated, using the example of the development of an interlocking logic
    corecore