1,897 research outputs found

    Dynamic Management of Portfolios with Transaction Costs under Tychastic Uncertainty.

    Get PDF
    We use in this chapter the viability/capturability approach for studying the problem of dynamic valuation and management of a portfolio with transaction costs in the framework of tychastic control systems (or dynamical games against nature) instead of stochastic control systems. Indeed, the very definition of the guaranteed valuation set can be formulated directly in terms of guaranteed viable-capture basin of a dynamical game. Hence, we shall “compute” the guaranteed viable-capture basin and find a formula for the valuation function involving an underlying criterion, use the tangential properties of such basins for proving that the valuation function is a solution to Hamilton-Jacobi-Isaacs partial differential equations. We then derive a dynamical feedback providing an adjustment law regulating the evolution of the portfolios obeying viability constraints until it achieves the given objective in finite time. We shall show that the Pujal—Saint-Pierre viability/capturability algorithm applied to this specific case provides both the valuation function and the associated portfolios.dynamic games; dynamic valuation; tychastic control systems; management of portfolio;

    Global algorithms for nonlinear discrete optimization and discrete-valued optimal control problems

    Get PDF
    Optimal control problems arise in many applications, such as in economics, finance, process engineering, and robotics. Some optimal control problems involve a control which takes values from a discrete set. These problems are known as discrete-valued optimal control problems. Most practical discrete-valued optimal control problems have multiple local minima and thus require global optimization methods to generate practically useful solutions. Due to the high complexity of these problems, metaheuristic based global optimization techniques are usually required.One of the more recent global optimization tools in the area of discrete optimization is known as the discrete filled function method. The basic idea of the discrete filled function method is as follows. We choose an initial point and then perform a local search to find an initial local minimizer. Then, we construct an auxiliary function, called a discrete filled function, at this local minimizer. By minimizing the filled function, either an improved local minimizer is found or one of the vertices of the constraint set is reached. Otherwise, the parameters of the filled function are adjusted. This process is repeated until no better local minimizer of the corresponding filled function is found. The final local minimizer is then taken as an approximation of the global minimizer.While the main aim of this thesis is to present a new computational methodfor solving discrete-valued optimal control problems, the initial focus is on solvingpurely discrete optimization problems. We identify several discrete filled functionstechniques in the literature and perform a critical review including comprehensive numerical tests. Once the best filled function method is identified, we propose and test several variations of the method with numerical examples.We then consider the task of determining near globally optimal solutions of discrete-valued optimal control problems. The main difficulty in solving the discrete-valued optimal control problems is that the control restraint set is discrete and hence not convex. Conventional computational optimal control techniques are designed for problems in which the control takes values in a connected set, such as an interval, and thus they cannot solve the problem directly. Furthermore, variable switching times are known to cause problems in the implementation of any numerical algorithm due to the variable location of discontinuities in the dynamics. Therefore, such problem cannot be solved using conventional computational approaches. We propose a time scaling transformation to overcome this difficulty, where a new discrete variable representing the switching sequence and a new variable controlling the switching times are introduced. The transformation results in an equivalent mixed discrete optimization problem. The transformed problemis then decomposed into a bi-level optimization problem, which is solved using a combination of an efficient discrete filled function method identified earlier and a computational optimal control technique based on the concept of control parameterization.To demonstrate the applicability of the proposed method, we solve two complex applied engineering problems involving a hybrid power system and a sensor scheduling task, respectively. Computational results indicate that this method is robust, reliable, and efficient. It can successfully identify a near-global solution for these complex applied optimization problems, despite the demonstrated presence of multiple local optima. In addition, we also compare the results obtained with other methods in the literature. Numerical results confirm that the proposed method yields significant improvements over those obtained by other methods

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms

    Viability in State-Action Space: Connecting Morphology, Control, and Learning

    Get PDF
    Wie können wir Robotern ermöglichen, modellfrei und direkt auf der Hardware zu lernen? Das maschinelle Lernen nimmt als Standardwerkzeug im Arsenal des Robotikers seinen Platz ein. Es gibt jedoch einige offene Fragen, wie man die Kontrolle über physikalische Systeme lernen kann. Diese Arbeit gibt zwei Antworten auf diese motivierende Frage. Das erste ist ein formales Mittel, um die inhärente Robustheit eines gegebenen Systemdesigns zu quantifizieren, bevor der Controller oder das Lernverfahren entworfen wird. Dies unterstreicht die Notwendigkeit, sowohl das Hardals auch das Software-Design eines Roboters zu berücksichtigen, da beide Aspekte in der Systemdynamik untrennbar miteinander verbunden sind. Die zweite ist die Formalisierung einer Sicherheitsmass, die modellfrei erlernt werden kann. Intuitiv zeigt diese Mass an, wie leicht ein Roboter Fehlschläge vermeiden kann. Auf diese Weise können Roboter unbekannte Umgebungen erkunden und gleichzeitig Ausfälle vermeiden. Die wichtigsten Beiträge dieser Dissertation basieren sich auf der Viabilitätstheorie. Viabilität bietet eine alternative Sichtweise auf dynamische Systeme: Anstatt sich auf die Konvergenzeigenschaften eines Systems in Richtung Gleichgewichte zu konzentrieren, wird der Fokus auf Menge von Fehlerzuständen und die Fähigkeit des Systems, diese zu vermeiden, verlagert. Diese Sichtweise eignet sich besonders gut für das Studium der Lernkontrolle an Robotern, da Stabilität im Sinne einer Konvergenz während des Lernprozesses selten gewährleistet werden kann. Der Begriff der Viabilität wird formal auf den Zustand-Aktion-Raum erweitert, mit Viabilitätsmengen von Staat-Aktionspaaren. Eine über diese Mengen definierte Mass ermöglicht eine quantifizierte Bewertung der Robustheit, die für die Familie aller fehlervermeidenden Regler gilt, und ebnet den Weg für ein sicheres, modellfreies Lernen. Die Arbeit beinhaltet auch zwei kleinere Beiträge. Der erste kleine Beitrag ist eine empirische Demonstration der Shaping durch ausschliessliche Modifikation der Systemdynamik. Diese Demonstration verdeutlicht die Bedeutung der Robustheit gegenüber Fehlern für die Lernkontrolle: Ausfälle können nicht nur Schäden verursachen, sondern liefern in der Regel auch keine nützlichen Gradienteninformationen für den Lernprozess. Der zweite kleine Beitrag ist eine Studie über die Wahl der Zustandsinitialisierungen. Entgegen der Intuition und der üblichen Praxis zeigt diese Studie, dass es zuverlässiger sein kann, das System gelegentlich aus einem Zustand zu initialisieren, der bekanntermassen unkontrollierbar ist.How can we enable robots to learn control model-free and directly on hardware? Machine learning is taking its place as a standard tool in the roboticist’s arsenal. However, there are several open questions on how to learn control for physical systems. This thesis provides two answers to this motivating question. The first is a formal means to quantify the inherent robustness of a given system design, prior to designing the controller or learning agent. This emphasizes the need to consider both the hardware and software design of a robot, which are inseparably intertwined in the system dynamics. The second is the formalization of a safety-measure, which can be learned model-free. Intuitively, this measure indicates how easily a robot can avoid failure, and enables robots to explore unknown environments while avoiding failures. The main contributions of this dissertation are based on viability theory. Viability theory provides a slightly unconventional view of dynamical systems: instead of focusing on a system’s convergence properties towards equilibria, the focus is shifted towards sets of failure states and the system’s ability to avoid these sets. This view is particularly well suited to studying learning control in robots, since stability in the sense of convergence can rarely be guaranteed during the learning process. The notion of viability is formally extended to state-action space, with viable sets of state-action pairs. A measure defined over these sets allows a quantified evaluation of robustness valid for the family of all failure-avoiding control policies, and also paves the way for enabling safe model-free learning. The thesis also includes two minor contributions. The first minor contribution is an empirical demonstration of shaping by exclusively modifying the system dynamics. This demonstration highlights the importance of robustness to failures for learning control: not only can failures cause damage, but they typically do not provide useful gradient information for the learning process. The second minor contribution is a study on the choice of state initializations. Counter to intuition and common practice, this study shows it can be more reliable to occasionally initialize the system from a state that is known to be uncontrollable
    • …
    corecore