558 research outputs found

    Use of a Bayesian belief network to predict the impacts of commercializing non-timber forest products on livelihoods

    Get PDF
    Commercialization of non-timber forest products (NTFPs) has been widely promoted as a means of sustainably developing tropical forest resources, in a way that promotes forest conservation while supporting rural livelihoods. However, in practice, NTFP commercialization has often failed to deliver the expected benefits. Progress in analyzing the causes of such failure has been hindered by the lack of a suitable framework for the analysis of NTFP case studies, and by the lack of predictive theory. We address these needs by developing a probabilistic model based on a livelihood framework, enabling the impact of NTFP commercialization on livelihoods to be predicted. The framework considers five types of capital asset needed to support livelihoods: natural, human, social, physical, and financial. Commercialization of NTFPs is represented in the model as the conversion of one form of capital asset into another, which is influenced by a variety of socio-economic, environmental, and political factors. Impacts on livelihoods are determined by the availability of the five types of assets following commercialization. The model, implemented as a Bayesian Belief Network, was tested using data from participatory research into 19 NTFP case studies undertaken in Mexico and Bolivia. The model provides a novel tool for diagnosing the causes of success and failure in NTFP commercialization, and can be used to explore the potential impacts of policy options and other interventions on livelihoods. The potential value of this approach for the development of NTFP theory is discussed

    Path propagation : a probabilistic inference algorithm for large and complex Bayesian networks

    Get PDF
    Bayesian networks are widely used for knowledge representation and uncertain reasoning. One of the most important services which Bayesian networks provide is (probabilistic) inference. Effective inference algorithms have been developed for probabilistic inference in Bayesian networks for many years. However, the effectiveness of the inference algorithms depends on the sizes of Bayesian networks. As the sizes of Bayesian networks become larger and larger in real applications, the inference algorithms become less effective and sometimes are even unable to carry out inference. In this thesis, a new inference algorithm specifically designed for large and complex Bayesian networks, called \u27path propagation\u27, is proposed. Path propagation takes full advantage of one of the most popular inference algorithms, i.e., global propagation. It improves over global propagation by carrying out inference only in certain paths in a junction tree that are relevant to queries. Compared with global propagation, path propagationtakes less computational resources and can effectively improve the computational efficiency for inference in large and complex Bayesian networks

    Heuristic assignment of CPDs for probabilistic inference in junction trees

    Get PDF
    Many researches have been done for efficient computation of probabilistic queries posed to Bayesian networks (BN). One of the popular architectures for exact inference on BNs is the Junction Tree (JT) based architecture. Among all the different architectures developed, HUGIN is the most efficient JT-based architecture. The Global Propagation (GP) method used in the HUGIN architecture is arguably one of the best methods for probabilistic inference in BNs. Before the propagation, initialization is done to obtain the potential for each cluster in the JT. Then with the GP method, each cluster potential becomes cluster marginal through passing messages with its neighboring clusters. Improvements have been proposed by many researchers to make this message propagation more efficient. Still the GP method can be very slow for dense networks. As BNs are applied to larger, more complex, and realistic applications, developing more efficient inference algorithm has become increasingly important. Towards this goal, in this paper, we present some heuristics for initialization that avoids unnecessary message passing among clusters of the JT and therefore it improves the performance of the architecture by passing lesser messages
    corecore