4,915 research outputs found

    Unbounded Regions of High-Order Voronoi Diagrams of Lines and Segments in Higher Dimensions

    Get PDF
    We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line segments or lines in a d-dimensional Euclidean space. The unbounded parts of these diagrams can be encoded by a Gaussian map on the sphere of directions S^(d-1). We show that the combinatorial complexity of the Gaussian map for the order-k Voronoi diagram of n line segments or lines is O(min{k,n-k} n^(d-1)), which is tight for n-k = O(1). All the d-dimensional cells of the farthest Voronoi diagram are unbounded, its (d-1)-skeleton is connected, and it does not have tunnels. A d-cell of the Voronoi diagram is called a tunnel if the set of its unbounded directions, represented as points on its Gaussian map, is not connected. In a three-dimensional space, the farthest Voronoi diagram of lines has exactly n^2-n three-dimensional cells, when n >= 2. The Gaussian map of the farthest Voronoi diagram of line segments or lines can be constructed in O(n^(d-1) alpha(n)) time, while if d=3, the time drops to worst-case optimal O(n^2)

    Higher-order Voronoi diagrams of polygonal objects

    Get PDF
    Higher-order Voronoi diagrams are fundamental geometric structures which encode the k-nearest neighbor information. Thus, they aid in computations that require proximity information beyond the nearest neighbor. They are related to various favorite structures in computational geometry and are a fascinating combinatorial problem to study. While higher-order Voronoi diagrams of points have been studied a lot, they have not been considered for other types of sites. Points lack dimensionality which makes them unable to represent various real-life instances. Points are the simplest kind of geometric object and therefore higher- order Voronoi diagrams of points can be considered as the corner case of all higher-order Voronoi diagrams. The goal of this dissertation is to move away from the corner and bring the higher-order Voronoi diagram to more general geometric instances. We focus on certain polygonal objects as they provide flexibility and are able to represent real-life instances. Before this dissertation, higher-order Voronoi diagrams of polygonal objects had been studied only for the nearest neighbor and farthest Voronoi diagrams. In this dissertation we investigate structural and combinatorial properties and discover that the dimensionality of geometric objects manifests itself in numerous ways which do not exist in the case of points. We prove that the structural complexity of the order-k Voronoi diagram of non-crossing line segments is O(k(n-k)), as in the case of points. We study disjoint line segments, intersecting line segments, line segments forming a planar straight-line graph and extend the results to the Lp metric, 1<=p<=infty. We also establish the connection between two mathematical abstractions: abstract Voronoi diagrams and the Clarkson-Shor framework. We design several construction algorithms that cover the case of non-point sites. While computational geometry provides several approaches to study the structural complexity that give tight realizable bounds, developing an effective construction algorithm is still a challenging problem even for points. Most of the construction algorithms are designed to work with points as they utilize their simplicity and relations with data-structures that work specifically for points. We extend the iterative and the sweepline approaches that are quite efficient in constructing all order-i Voronoi diagrams, for i<=k and we also give three randomized construction algorithms for abstract higher-order Voronoi diagrams that deal specifically with the construction of the order-k Voronoi diagrams

    New Results on Abstract Voronoi Diagrams

    Get PDF
    Voronoi diagrams are a fundamental structure used in many areas of science. For a given set of objects, called sites, the Voronoi diagram separates the plane into regions, such that points belonging to the same region have got the same nearest site. This definition clearly depends on the type of given objects, they may be points, line segments, polygons, etc. and the distance measure used. To free oneself from these geometric notions, Klein introduced abstract Voronoi diagrams as a general construct covering many concrete Voronoi diagrams. Abstract Voronoi diagrams are based on a system of bisecting curves, one for each pair of abstract sites, separating the plane into two dominance regions, belonging to one site each. The intersection of all dominance regions belonging to one site p defines its Voronoi region. The system of bisecting curves is required to fulfill only some simple combinatorial properties, like Voronoi regions to be connected, the union of their closures cover the whole plane, and the bisecting curves are unbounded. These assumptions are enough to show that an abstract Voronoi diagram of n sites is a planar graph of complexity O(n) and can be computed in expected time O(n log n) by a randomized incremental construction. In this thesis we widen the notion of abstract Voronoi diagrams in several senses. One step is to allow disconnected Voronoi regions. We assume that in a diagram of a subset of three sites each Voronoi region may consist of at most s connected components, for a constant s, and show that the diagram can be constructed in expected time O(s2 n ∑3 ≤ j ≤ n mj / j), where mj is the expected number of connected components of a Voronoi region over all diagrams of a subset of j sites. The case that all Voronoi regions are connected is a subcase, where this algorithm performs in optimal O(n log n) time, because here s = mj =1. The next step is to additionally allow bisecting curves to be closed. We present an algorithm constructing such diagrams which runs in expected time O(s2 n log(max{s,n}) ∑2 ≤ j≤ n mj / j). This algorithm is slower by a log n-factor compared to the one for disconnected regions and unbounded bisectors. The extra time is necessary to be able to handle special phenomenons like islands, where a Voronoi region is completely surrounded by another region, something that can occur only when bisectors are closed. However, this algorithm solves many open problems and improves the running time of some existing algorithms, for example for the farthest Voronoi diagram of n simple polygons of constant complexity. Another challenge was to study higher order abstract Voronoi diagrams. In the concrete sense of an order-k Voronoi diagram points are collected in the same Voronoi region, if they have the same k nearest sites. By suitably intersecting the dominance regions this can be defined also for abstract Voronoi diagrams. The question arising is about the complexity of an order-k Voronoi diagram. There are many subsets of size k but fortunately many of them have an empty order-k region. For point sites it has already been shown that there can be at most O(k (n-k)) many regions and even though order-k regions may be disconnected when considering line segments, still the complexity of the order-k diagram remains O(k(n-k)). The proofs used to show this strongly depended on the geometry of the sites and the distance measure, and were thus not applicable for our abstract higher order Voronoi diagrams. The proofs used to show this strongly depended on the geometry of the sites and the distance measure, and were thus not applicable for our abstract higher order Voronoi diagrams. Nevertheless, we were able to come up with proofs of purely topological and combinatorial nature of Jordan curves and certain permutation sequences, and hence we could show that also the order-k abstract Voronoi diagram has complexity O(k (n-k)), assuming that bisectors are unbounded, and the order-1 regions are connected. Finally, we discuss Voronoi diagrams having the shape of a tree or forest. Aggarwal et. al. showed that if points are in convex position, then given their ordering along the convex hull, their Voronoi diagram, which is a tree, can be computed in linear time. Klein and Lingas have generalized this idea to Hamiltonian abstract Voronoi diagrams, where a curve is given, intersecting each Voronoi region with respect to any subset of sites exactly once. If the ordering of the regions along the curve is known in advance, all Voronoi regions are connected, and all bisectors are unbounded, then the abstract Voronoi diagram can be computed in linear time. This algorithm also applies to diagrams which are trees for all subsets of sites and the ordering of the unbounded regions around the diagram is known. In this thesis we go one step further and allow the diagram to be a forest for subsets of sites as long as the complete diagram is a tree. We show that also these diagrams can be computed in linear time

    On the Complexity of Randomly Weighted Voronoi Diagrams

    Full text link
    In this paper, we provide an O(npolylogn)O(n \mathrm{polylog} n) bound on the expected complexity of the randomly weighted Voronoi diagram of a set of nn sites in the plane, where the sites can be either points, interior-disjoint convex sets, or other more general objects. Here the randomness is on the weight of the sites, not their location. This compares favorably with the worst case complexity of these diagrams, which is quadratic. As a consequence we get an alternative proof to that of Agarwal etal [AHKS13] of the near linear complexity of the union of randomly expanded disjoint segments or convex sets (with an improved bound on the latter). The technique we develop is elegant and should be applicable to other problems

    Computing largest circles separating two sets of segments

    Get PDF
    A circle CC separates two planar sets if it encloses one of the sets and its open interior disk does not meet the other set. A separating circle is a largest one if it cannot be locally increased while still separating the two given sets. An Theta(n log n) optimal algorithm is proposed to find all largest circles separating two given sets of line segments when line segments are allowed to meet only at their endpoints. In the general case, when line segments may intersect Ω(n2)\Omega(n^2) times, our algorithm can be adapted to work in O(n alpha(n) log n) time and O(n \alpha(n)) space, where alpha(n) represents the extremely slowly growing inverse of the Ackermann function.Comment: 14 pages, 3 figures, abstract presented at 8th Canadian Conference on Computational Geometry, 199
    • …
    corecore