518 research outputs found

    Novel High Performance Ultra Low Power Static Random Access Memories (SRAMs) Based on Next Generation Technologies

    Get PDF
    Title from PDF of title page viewed January 27, 2021Dissertation advisor: Masud H. ChowdhuryVitaIncludes bibliographical references (page 107-120)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2019Next Big Thing Is Surely Small: Nanotechnology Can Bring Revolution. Nanotechnology leads the world towards many new applications in various fields of computing, communication, defense, entertainment, medical, renewable energy and environment. These nanotechnology applications require an energy-efficient memory system to compute and process. Among all the memories, Static Random Access Memories (SRAMs) are high performance memories and occupies more than 50% of any design area. Therefore, it is critical to design high performance and energy-efficient SRAM design. Ultra low power and high speed applications require a new generation memory capable of operating at low power as well as low execution time. In this thesis, a novel 8T SRAM design is proposed that offers significantly faster access time and lowers energy consumption along with better read stability and write ability. The proposed design can be used in the conventional SRAM as well as in computationally intensive applications like neural networks and machine learning classifiers [1]-[4]. Novel 8T SRAM design offers higher energy efficiency, reliability, robustness and performance compared to the standard 6T and other existing 8T and 9T designs. It offers the advantages of a 10T SRAM without the additional area, delay and power overheads of the 10T SRAM. The proposed 8T SRAM would be able to overcome many other limitations of the conventional 6T and other 7T, 8T and 9T designs. The design employs single bitline for the write operation, therefore the number of write drivers are reduced. The defining feature of the proposed 8T SRAM is its hybrid design, which is the combination of two techniques: (i) the utilization of single-ended bitline and (ii) the utilization of virtual ground. The single-ended bitline technique ensures separate read and write operations, which eventually reduces the delay and power consumption during the read and write operations. It's independent read and write paths allow the use of the minimum sized access transistors and aid in a disturb-free read operation. The virtual ground weakens the positive feedback in the SRAM cell and improves its write ability. The virtual ground technique is also used to reduce leakages. The proposed design does not require precharging the bitlines for the read operation, which reduces the area and power overheads of the memory system by eliminating the precharging circuit. The design isolates the storage node from the read path, which improves the read stability. For reliability study, we have investigated the static noise margin (SNM) of the proposed 8T SRAM, for which, we have used two methods – (i) the traditional SNM method with the butterfly curve, (ii) the N-curve method A comparative analysis is performed between the proposed and the existing SRAM designs in terms of area, total power consumption during the read and write operations, and stability and reliability. All these advantages make the proposed 8T SRAM design an ideal candidate for the conventional and computationally intensive applications like machine learning classifier and deep learning neural network. In addition to this, there is need for next generation technologies to design SRAM memory because the conventional CMOS technology is approaching its physical and performance boundaries and as a consequence, becoming incompatible with ultra-low-power applications. Emerging devices such as Tunnel Field Effect Transistor (TFET)) and Graphene Nanoribbon Field Effect Transistor (GNRFET) devices are highly potential candidates to overcome the limitations of MOSFET because of their ability to achieve subthreshold slopes below 60 mV/decade and very low leakage currents [6]-[9]. This research also explores novel TFET and GNRFET based 6T SRAM. The thesis evaluates the standby leakage power in the Tunnel FET (TFET) based 6T SRAM cell for different pull-up, pull-down, and pass-gate transistors ratios (PU: PD: PG) and compared to 10nm FinFET based 6T SRAM designs. It is observed that the 10nm TFET based SRAMs have 107.57%, 163.64%, and 140.44% less standby leakage power compared to the 10nm FinFET based SRAMs when the PU: PD: PG ratios are 1:1:1, 1:5:2 and 2:5:2, respectively. The thesis also presents an analysis of the stability and reliability of sub-10nm TFET based 6T SRAM circuit with a reduced supply voltage of 500mV. The static noise margin (SNM), which is a critical measure of SRAM stability and reliability, is determined for hold, read and write operations of the 6T TFET SRAM cell. The robustness of the optimized TFET based 6T SRAM circuit is also evaluated at different supply voltages. Simulations were done in HSPICE and Cadence tools. From the analysis, it is clear that the main advantage of the TFET based SRAM would be the significant improvement in terms of leakage or standby power consumption. Compared to the FinFET based SRAM the standby leakage power of the T-SRAMs are 107.57%, 163.64%, and 140.44% less for 1:1:1, 1:5:2 and 2:5:2 configurations, respectively. Since leakage/standby power is the primary source of power consumption in the SRAM, and the overall system energy efficiency depends on SRAM power consumption, TFET based SRAM would lead to massive improvement of the energy efficiency of the system. Therefore, T-SRAMs are more suitable for ultra-low power applications. In addition to this, the thesis evaluates the standby leakage power of types of Graphene Nanoribbon FETs based 6T SRAM bitcell and compared to 10nm FinFET based 6T SRAM bitcell. It is observed that the 10nm MOS type GNRFET based SRAMs have 16.43 times less standby leakage power compared to the 10nm FinFET based SRAMs. The double gate SB-GNRFET based SRAM consumes 1.35E+03 times less energy compared to the 10nm FinFET based SRAM during write. However, during read double gate SB-GNRFET based SRAM consume 15 times more energy than FinFET based SRAM. It is also observed that GNRFET based SRAMs are more stable and reliable than FinFET based SRAM.Introduction -- Background -- Novel High Performance Ultra Low Power SRAM Design -- Tunnel FET Based SRAM Design -- Graphene Nanoribbon FET Based SRAM Design -- Double-gate FDSOI Based SRAM Designs -- Novel CNTFET and MEMRISTOR Based Digital Designs -- Conclusio

    Proceedings of the Cold Electronics Workshop

    Get PDF
    The benefits and problems of the use of cold semiconductor electronics and the research and development effort required to bring cold electronics into more widespread use were examined

    Cutting Edge Nanotechnology

    Get PDF
    The main purpose of this book is to describe important issues in various types of devices ranging from conventional transistors (opening chapters of the book) to molecular electronic devices whose fabrication and operation is discussed in the last few chapters of the book. As such, this book can serve as a guide for identifications of important areas of research in micro, nano and molecular electronics. We deeply acknowledge valuable contributions that each of the authors made in writing these excellent chapters

    Decomposition tool targeting FPGA architectures

    Full text link
    The growing interest in the field of logic synthesis targeting Field Programmable Gate Arrays (FPGA) and the active research carried out by a number of research groups in the area of functional decomposition is the prime motivation for this thesis. Logic synthesis has been an area of interest in many universities all over the world. The work involves the study and implementation of techniques and methods in logic synthesis. In this work, a logic synthesis tool has been developed implementing the aspects of general and complete Decomposition method based on functional decomposition techniques [4]. The tool is aimed at producing outputs faster and more efficient than the available software. C++ Standard template library is used to develop this tool. The output of this tool is designed to be compatible with the available vendor software. The tool has been tested on MCNC benchmarks and those created keeping in mind the industry requirements

    A Comprehensive Fault Model for Concurrent Error Detection in MOS Circuits

    Get PDF
    Naval Electronics Sys. Comm. and Office of Naval Research / N00039-80-C-0556Ope

    Computation with photochromic memory

    Get PDF
    Unconventional computing is an area of research in which novel materials and paradigms are utilised to implement computation and data storage. This includes attempts to embed computation into biological systems, which could allow the observation and modification of living processes. This thesis explores the storage and computational capabilities of a biocompatible light-sensitive (photochromic) molecular switch (NitroBIPS) that has the potential to be embedded into both natural and synthetic biological systems. To achieve this, NitroBIPS was embedded in a (PDMS) polymer matrix and an optomechanical setup was built in order to expose the sample to optical stimulation and record fluorescent emission. NitroBIPS has two stable forms - one fluorescent and one non-fluorescent - and can be switched between the two via illumination with ultraviolet or visible light. By exposing NitroBIPS samples to specific stimulus pulse sequences and recording the intensity of fluorescence emission, data could be stored in registers and logic gates and circuits implemented. In addition, by moving the area of illumination, sub-regions of the sample could be addressed. This enabled parallel registers, Turing machine tapes and elementary cellular automata to be implemented. It has been demonstrated, therefore, that photochromic molecular memory can be used to implement conventional universal computation in an unconventional manner. Furthermore, because registers, Turing machine tapes, logic gates, logic circuits and elementary cellular automata all utilise the same samples and same hardware, it has been shown that photochromic computational devices can be dynamically repurposed. NitroBIPS and related molecules have been shown elsewhere to be capable of modifying many biological processes. This includes inhibiting protein binding, perturbing lipid membranes and binding to DNA in a manner that is dependent on the molecule's form. The implementation of universal computation demonstrated in this thesis could, therefore, be used in combination with these biological manipulations as key components within synthetic biology systems or in order to monitor and control natural biological processes

    Long-Term Memory for Cognitive Architectures: A Hardware Approach Using Resistive Devices

    Get PDF
    A cognitive agent capable of reliably performing complex tasks over a long time will acquire a large store of knowledge. To interact with changing circumstances, the agent will need to quickly search and retrieve knowledge relevant to its current context. Real time knowledge search and cognitive processing like this is a challenge for conventional computers, which are not optimised for such tasks. This thesis describes a new content-addressable memory, based on resistive devices, that can perform massively parallel knowledge search in the memory array. The fundamental circuit block that supports this capability is a memory cell that closely couples comparison logic with non-volatile storage. By using resistive devices instead of transistors in both the comparison circuit and storage elements, this cell improves area density by over an order of magnitude compared to state of the art CMOS implementations. The resulting memory does not need power to maintain stored information, and is therefore well suited to cognitive agents with large long-term memories. The memory incorporates activation circuits, which bias the knowledge retrieval process according to past memory access patterns. This is achieved by approximating the widely used base-level activation function using resistive devices to store, maintain and compare activation values. By distributing an instance of this circuit to every row in memory, the activation for all memory objects can be updated in parallel. A test using the word sense disambiguation task shows this circuit-based activation model only incurs a small loss in accuracy compared to exact base-level calculations. A variation of spreading activation can also be achieved in-memory. Memory objects are encoded with high-dimensional vectors that create association between correlated representations. By storing these high-dimensional vectors in the new content-addressable memory, activation can be spread to related objects during search operations. The new memory is scalable, power and area efficient, and performs operations in parallel that are infeasible in real-time for a sequential processor with a conventional memory hierarchy.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 201

    Computation with photochromic memory

    Get PDF
    Unconventional computing is an area of research in which novel materials and paradigms are utilised to implement computation and data storage. This includes attempts to embed computation into biological systems, which could allow the observation and modification of living processes. This thesis explores the storage and computational capabilities of a biocompatible light-sensitive (photochromic) molecular switch (NitroBIPS) that has the potential to be embedded into both natural and synthetic biological systems. To achieve this, NitroBIPS was embedded in a (PDMS) polymer matrix and an optomechanical setup was built in order to expose the sample to optical stimulation and record fluorescent emission. NitroBIPS has two stable forms - one fluorescent and one non-fluorescent - and can be switched between the two via illumination with ultraviolet or visible light. By exposing NitroBIPS samples to specific stimulus pulse sequences and recording the intensity of fluorescence emission, data could be stored in registers and logic gates and circuits implemented. In addition, by moving the area of illumination, sub-regions of the sample could be addressed. This enabled parallel registers, Turing machine tapes and elementary cellular automata to be implemented. It has been demonstrated, therefore, that photochromic molecular memory can be used to implement conventional universal computation in an unconventional manner. Furthermore, because registers, Turing machine tapes, logic gates, logic circuits and elementary cellular automata all utilise the same samples and same hardware, it has been shown that photochromic computational devices can be dynamically repurposed. NitroBIPS and related molecules have been shown elsewhere to be capable of modifying many biological processes. This includes inhibiting protein binding, perturbing lipid membranes and binding to DNA in a manner that is dependent on the molecule's form. The implementation of universal computation demonstrated in this thesis could, therefore, be used in combination with these biological manipulations as key components within synthetic biology systems or in order to monitor and control natural biological processes

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    A walk on the frontier of energy electronics with power ultra-wide bandgap oxides and ultra-thin neuromorphic 2D materials

    Get PDF
    Altres ajuts: the ICN2 is funded also by the CERCA programme / Generalitat de CatalunyaUltra-wide bandgap (UWBG) semiconductors and ultra-thin two-dimensional materials (2D) are at the very frontier of the electronics for energy management or energy electronics. A new generation of UWBG semiconductors will open new territories for higher power rated power electronics and deeper ultraviolet optoelectronics. Gallium oxide - GaO(4.5-4.9 eV), has recently emerged as a suitable platform for extending the limits which are set by conventional (-3 eV) WBG e.g. SiC and GaN and transparent conductive oxides (TCO) e.g. In2O3, ZnO, SnO2. Besides, GaO, the first efficient oxide semiconductor for energy electronics, is opening the door to many more semiconductor oxides (indeed, the largest family of UWBGs) to be investigated. Among these new power electronic materials, ZnGa2O4 (-5 eV) enables bipolar energy electronics, based on a spinel chemistry, for the first time. In the lower power rating end, power consumption also is also a main issue for modern computers and supercomputers. With the predicted end of the Moores law, the memory wall and the heat wall, new electronics materials and new computing paradigms are required to balance the big data (information) and energy requirements, just as the human brain does. Atomically thin 2D-materials, and the rich associated material systems (e.g. graphene (metal), MoS2 (semiconductor) and h-BN (insulator)), have also attracted a lot of attention recently for beyond-silicon neuromorphic computing with record ultra-low power consumption. Thus, energy nanoelectronics based on UWBG and 2D materials are simultaneously extending the current frontiers of electronics and addressing the issue of electricity consumption, a central theme in the actions against climate chang
    • …
    corecore