2,237 research outputs found

    The Hidden Convexity of Spectral Clustering

    Full text link
    In recent years, spectral clustering has become a standard method for data analysis used in a broad range of applications. In this paper we propose a new class of algorithms for multiway spectral clustering based on optimization of a certain "contrast function" over the unit sphere. These algorithms, partly inspired by certain Independent Component Analysis techniques, are simple, easy to implement and efficient. Geometrically, the proposed algorithms can be interpreted as hidden basis recovery by means of function optimization. We give a complete characterization of the contrast functions admissible for provable basis recovery. We show how these conditions can be interpreted as a "hidden convexity" of our optimization problem on the sphere; interestingly, we use efficient convex maximization rather than the more common convex minimization. We also show encouraging experimental results on real and simulated data.Comment: 22 page

    Decomposition by Successive Convex Approximation: A Unifying Approach for Linear Transceiver Design in Heterogeneous Networks

    Get PDF
    We study the downlink linear precoder design problem in a multi-cell dense heterogeneous network (HetNet). The problem is formulated as a general sum-utility maximization (SUM) problem, which includes as special cases many practical precoder design problems such as multi-cell coordinated linear precoding, full and partial per-cell coordinated multi-point transmission, zero-forcing precoding and joint BS clustering and beamforming/precoding. The SUM problem is difficult due to its non-convexity and the tight coupling of the users' precoders. In this paper we propose a novel convex approximation technique to approximate the original problem by a series of convex subproblems, each of which decomposes across all the cells. The convexity of the subproblems allows for efficient computation, while their decomposability leads to distributed implementation. {Our approach hinges upon the identification of certain key convexity properties of the sum-utility objective, which allows us to transform the problem into a form that can be solved using a popular algorithmic framework called BSUM (Block Successive Upper-Bound Minimization).} Simulation experiments show that the proposed framework is effective for solving interference management problems in large HetNet.Comment: Accepted by IEEE Transactions on Wireless Communicatio

    Fast Robust PCA on Graphs

    Get PDF
    Mining useful clusters from high dimensional data has received significant attention of the computer vision and pattern recognition community in the recent years. Linear and non-linear dimensionality reduction has played an important role to overcome the curse of dimensionality. However, often such methods are accompanied with three different problems: high computational complexity (usually associated with the nuclear norm minimization), non-convexity (for matrix factorization methods) and susceptibility to gross corruptions in the data. In this paper we propose a principal component analysis (PCA) based solution that overcomes these three issues and approximates a low-rank recovery method for high dimensional datasets. We target the low-rank recovery by enforcing two types of graph smoothness assumptions, one on the data samples and the other on the features by designing a convex optimization problem. The resulting algorithm is fast, efficient and scalable for huge datasets with O(nlog(n)) computational complexity in the number of data samples. It is also robust to gross corruptions in the dataset as well as to the model parameters. Clustering experiments on 7 benchmark datasets with different types of corruptions and background separation experiments on 3 video datasets show that our proposed model outperforms 10 state-of-the-art dimensionality reduction models. Our theoretical analysis proves that the proposed model is able to recover approximate low-rank representations with a bounded error for clusterable data

    Non-convex Optimization for Machine Learning

    Full text link
    A vast majority of machine learning algorithms train their models and perform inference by solving optimization problems. In order to capture the learning and prediction problems accurately, structural constraints such as sparsity or low rank are frequently imposed or else the objective itself is designed to be a non-convex function. This is especially true of algorithms that operate in high-dimensional spaces or that train non-linear models such as tensor models and deep networks. The freedom to express the learning problem as a non-convex optimization problem gives immense modeling power to the algorithm designer, but often such problems are NP-hard to solve. A popular workaround to this has been to relax non-convex problems to convex ones and use traditional methods to solve the (convex) relaxed optimization problems. However this approach may be lossy and nevertheless presents significant challenges for large scale optimization. On the other hand, direct approaches to non-convex optimization have met with resounding success in several domains and remain the methods of choice for the practitioner, as they frequently outperform relaxation-based techniques - popular heuristics include projected gradient descent and alternating minimization. However, these are often poorly understood in terms of their convergence and other properties. This monograph presents a selection of recent advances that bridge a long-standing gap in our understanding of these heuristics. The monograph will lead the reader through several widely used non-convex optimization techniques, as well as applications thereof. The goal of this monograph is to both, introduce the rich literature in this area, as well as equip the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems.Comment: The official publication is available from now publishers via http://dx.doi.org/10.1561/220000005
    • …
    corecore