545 research outputs found

    Model Reduction for Multiscale Lithium-Ion Battery Simulation

    Full text link
    In this contribution we are concerned with efficient model reduction for multiscale problems arising in lithium-ion battery modeling with spatially resolved porous electrodes. We present new results on the application of the reduced basis method to the resulting instationary 3D battery model that involves strong non-linearities due to Buttler-Volmer kinetics. Empirical operator interpolation is used to efficiently deal with this issue. Furthermore, we present the localized reduced basis multiscale method for parabolic problems applied to a thermal model of batteries with resolved porous electrodes. Numerical experiments are given that demonstrate the reduction capabilities of the presented approaches for these real world applications

    On Multiscale Methods in Petrov-Galerkin formulation

    Full text link
    In this work we investigate the advantages of multiscale methods in Petrov-Galerkin (PG) formulation in a general framework. The framework is based on a localized orthogonal decomposition of a high dimensional solution space into a low dimensional multiscale space with good approximation properties and a high dimensional remainder space{, which only contains negligible fine scale information}. The multiscale space can then be used to obtain accurate Galerkin approximations. As a model problem we consider the Poisson equation. We prove that a Petrov-Galerkin formulation does not suffer from a significant loss of accuracy, and still preserve the convergence order of the original multiscale method. We also prove inf-sup stability of a PG Continuous and a Discontinuous Galerkin Finite Element multiscale method. Furthermore, we demonstrate that the Petrov-Galerkin method can decrease the computational complexity significantly, allowing for more efficient solution algorithms. As another application of the framework, we show how the Petrov-Galerkin framework can be used to construct a locally mass conservative solver for two-phase flow simulation that employs the Buckley-Leverett equation. To achieve this, we couple a PG Discontinuous Galerkin Finite Element method with an upwind scheme for a hyperbolic conservation law

    Robust error estimates in weak norms for advection dominated transport problems with rough data

    Get PDF
    We consider mixing problems in the form of transient convection--diffusion equations with a velocity vector field with multiscale character and rough data. We assume that the velocity field has two scales, a coarse scale with slow spatial variation, which is responsible for advective transport and a fine scale with small amplitude that contributes to the mixing. For this problem we consider the estimation of filtered error quantities for solutions computed using a finite element method with symmetric stabilization. A posteriori error estimates and a priori error estimates are derived using the multiscale decomposition of the advective velocity to improve stability. All estimates are independent both of the P\'eclet number and of the regularity of the exact solution

    Numerical Homogenization of the Acoustic Wave Equations with a Continuum of Scales

    Get PDF
    In this paper, we consider numerical homogenization of acoustic wave equations with heterogeneous coefficients, namely, when the bulk modulus and the density of the medium are only bounded. We show that under a Cordes type condition the second order derivatives of the solution with respect to harmonic coordinates are L2L^2 (instead H−1H^{-1} with respect to Euclidean coordinates) and the solution itself is in L∞(0,T,H2(Ω))L^{\infty}(0,T,H^2(\Omega)) (instead of L∞(0,T,H1(Ω))L^{\infty}(0,T,H^1(\Omega)) with respect to Euclidean coordinates). Then, we propose an implicit time stepping method to solve the resulted linear system on coarse spatial scales, and present error estimates of the method. It follows that by pre-computing the associated harmonic coordinates, it is possible to numerically homogenize the wave equation without assumptions of scale separation or ergodicity.Comment: 27 pages, 4 figures, Submitte

    Nonlinear nonlocal multicontinua upscaling framework and its applications

    Full text link
    In this paper, we discuss multiscale methods for nonlinear problems. The main idea of these approaches is to use local constraints and solve problems in oversampled regions for constructing macroscopic equations. These techniques are intended for problems without scale separation and high contrast, which often occur in applications. For linear problems, the local solutions with constraints are used as basis functions. This technique is called Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM). GMsFEM identifies macroscopic quantities based on rigorous analysis. In corresponding upscaling methods, the multiscale basis functions are selected such that the degrees of freedom have physical meanings, such as averages of the solution on each continuum. This paper extends the linear concepts to nonlinear problems, where the local problems are nonlinear. The main concept consists of: (1) identifying macroscopic quantities; (2) constructing appropriate oversampled local problems with coarse-grid constraints; (3) formulating macroscopic equations. We consider two types of approaches. In the first approach, the solutions of local problems are used as basis functions (in a linear fashion) to solve nonlinear problems. This approach is simple to implement; however, it lacks the nonlinear interpolation, which we present in our second approach. In this approach, the local solutions are used as a nonlinear forward map from local averages (constraints) of the solution in oversampling region. This local fine-grid solution is further used to formulate the coarse-grid problem. Both approaches are discussed on several examples and applied to single-phase and two-phase flow problems, which are challenging because of convection-dominated nature of the concentration equation
    • …
    corecore