285 research outputs found

    Cyber-Physical Modeling of Implantable Cardiac Medical Devices

    Get PDF
    The design of bug-free and safe medical device software is challenging, especially in complex implantable devices that control and actuate organs in unanticipated contexts. Safety recalls of pacemakers and implantable cardioverter defibrillators between 1990 and 2000 affected over 600,000 devices. Of these, 200,000 or 41%, were due to firmware issues and their effect continues to increase in frequency. There is currently no formal methodology or open experimental platform to test and verify the correct operation of medical device software within the closed-loop context of the patient. To this effect, a real-time Virtual Heart Model (VHM) has been developed to model the electrophysiological operation of the functioning and malfunctioning (i.e., during arrhythmia) heart. By extracting the timing properties of the heart and pacemaker device, we present a methodology to construct a timed-automata model for functional and formal testing and verification of the closed-loop system. The VHM\u27s capability of generating clinically-relevant response has been validated for a variety of common arrhythmias. Based on a set of requirements, we describe a closed-loop testing environment that allows for interactive and physiologically relevant model-based test generation for basic pacemaker device operations such as maintaining the heart rate, atrial-ventricle synchrony and complex conditions such as pacemaker-mediated tachycardia. This system is a step toward a testing and verification approach for medical cyber-physical systems with the patient-in-the-loop

    High-Confidence Medical Device Software Development

    Get PDF
    The design of bug-free and safe medical device software is challenging, especially in complex implantable devices. This is due to the device\u27s closed-loop interaction with the patient\u27s organs, which are stochastic physical environments. The life-critical nature and the lack of existing industry standards to enforce software validation make this an ideal domain for exploring design automation challenges for integrated functional and formal modeling with closed-loop analysis. The primary goal of high-confidence medical device software is to guarantee the device will never drive the patient into an unsafe condition even though we do not have complete understanding of the physiological plant. There are two major differences between modeling physiology and modeling man-made systems: first, physiology is much more complex and less well-understood than man-made systems like cars and airplanes, and spans several scales from the molecular to the entire human body. Secondly, the variability between humans is orders of magnitude larger than that between two cars coming off the assembly line. Using the implantable cardiac pacemaker as an example of closed-loop device, and the heart as the organ to be modeled, we present several of the challenges and early results in model-based device validation. We begin with detailed timed automata model of the pacemaker, based on the specifications and algorithm descriptions from Boston Scientific. For closed-loop evaluation, a real-time Virtual Heart Model (VHM) has been developed to model the electrophysiological operation of the functioning and malfunctioning (i.e., during arrhythmia) hearts. By extracting the timing properties of the heart and pacemaker device, we present a methodology to construct timed-automata models for formal model checking and functional testing of the closed-loop system. The VHM\u27s capability of generating clinically-relevant response has been validated for a variety of common arrhythmias. Based on a set of requirements, we describe a framework of Abstraction Trees that allows for interactive and physiologically relevant closed-loop model checking and testing for basic pacemaker device operations such as maintaining the heart rate, atrial-ventricle synchrony and complex conditions such as avoiding pacemaker-mediated tachycardia. Through automatic model translation of abstract models to simulation-based testing and code generation for platform-level testing, this model-based design approach ensures the closed-loop safety properties are retained through the design toolchain and facilitates the development of verified software from verified models. This system is a step toward a validation and testing approach for medical cyber-physical systems with the patient-in-the-loop

    From Verified Models to Verified Code for Safe Medical Devices

    Get PDF
    Medical devices play an essential role in the care of patients around the world, and can have a life-saving effect. An emerging category of autonomous medical devices like implantable pacemakers and implantable cardioverter defibrillators (ICD) diagnose conditions of the patient and autonomously deliver therapies. Without trained professionals in the loop, the software component of autonomous medical devices is responsible for making critical therapeutic decisions, which pose a new set of challenges to guarantee patient safety. As regulation effort to guarantee patient safety, device manufacturers are required to submit evidence for the safety and efficacy of the medical devices before they can be released to the market. Due to the closed-loop interaction between the device and the patient, the safety and efficacy of autonomous medical devices must ultimately be evaluated within their physiological context. Currently the primary closed-loop validation of medical devices is in form of clinical trials, in which the devices are evaluated on real patients. Clinical trials are expensive and expose the patients to risks associated with untested devices. Clinical trials are also conducted after device development, therefore issues found during clinical trials are expensive to fix. There is urgent need for closed-loop validation of autonomous medical devices before the devices are used in clinical trials. In this thesis, I used implantable cardiac devices to demonstrate the applications of model-based approaches during and after device development to provide confidence towards the safety and efficacy of the devices. A heart model structure is developed to mimic the electrical behaviors of the heart in various heart conditions. The heart models created with the model structure are capable of interacting with implantable cardiac devices in closed-loop and can provide physiological interpretations for a large variety of heart conditions. With the heart models, I demonstrated that closed-loop model checking is capable of identifying known and unknown safety violations within the pacemaker design. More importantly, I developed a framework to choose the most appropriate heart models to cover physiological conditions that the pacemaker may encounter, and provide physiological context to counter-examples returned by the model checker. A model translation tool UPP2SF is then developed to translate the pacemaker design in UPPAAL to Stateflow, and automatically generated to C code. The automated and rigorous translation ensures that the properties verified during model checking still hold in the implementation, which justifies the model checking effort. Finally, the devices are evaluated with a virtual patient cohort consists of a large number of heart models before evaluated in clinical trials. These in-silico pre-clinical trials provide useful insights which can be used to increase the success rate of a clinical trial. The work in this dissertation demonstrated the importance and challenges to represent physiological behaviors during closed-loop validation of autonomous medical devices, and demonstrated the capability of model-based approaches to provide safety and efficacy evidence during and after device development

    Towards Model Checking of Implantable Cardioverter Defibrillators

    Get PDF
    Ventricular Fibrillation is a disorganized electrical excitation of the heart that results in inadequate blood flow to the body. It usually ends in death within a minute. A common way to treat the symptoms of fibrillation is to implant a medical device, known as an Implantable Cardioverter Defibrillator (ICD), in the patient\u27s body. Model-based verification can supply rigorous proofs of safety and efficacy. In this paper, we build a hybrid system model of the human heart+ICD closed loop, and show it to be a STORMED system, a class of o-minimal hybrid systems that admit finite bisimulations. In general, it may not be possible to compute the bisimulation. We show that approximate reachability can yield a finite simulation for STORMED systems, and that certain compositions respect the STORMED property. The results of this paper are theoretical and motivate the creation of concrete model checking procedures for STORMED systems

    Asynchronous adaptive time step in quantitative cellular automata modeling

    Get PDF
    BACKGROUND: The behaviors of cells in metazoans are context dependent, thus large-scale multi-cellular modeling is often necessary, for which cellular automata are natural candidates. Two related issues are involved in cellular automata based multi-cellular modeling: how to introduce differential equation based quantitative computing to precisely describe cellular activity, and upon it, how to solve the heavy time consumption issue in simulation. RESULTS: Based on a modified, language based cellular automata system we extended that allows ordinary differential equations in models, we introduce a method implementing asynchronous adaptive time step in simulation that can considerably improve efficiency yet without a significant sacrifice of accuracy. An average speedup rate of 4–5 is achieved in the given example. CONCLUSIONS: Strategies for reducing time consumption in simulation are indispensable for large-scale, quantitative multi-cellular models, because even a small 100 × 100 × 100 tissue slab contains one million cells. Distributed and adaptive time step is a practical solution in cellular automata environment

    Closed-loop Verification of Medical Devices With Model Abstraction and Refinement

    Get PDF
    The design and implementation of software for medical devices is challenging due to the closed-loop interaction with the patient, which is a stochastic physical environment. The safety-critical nature and the lack of existing industry standards for verification, make this an ideal domain for exploring applications of formal modeling and closed-loop analysis. The biggest challenge is that the environment model(s) have to be both complex enough to express the physiological requirements, and general enough to cover all possible inputs to the device. In this effort, we use a dual chamber implantable pacemaker as a case study to demonstrate verification of software specifications of medical devices as timed-automata models in UPPAAL. The pacemaker model is based on the specifications and algorithm descriptions from Boston Scientific. The heart is modeled using timed automata based on the physiology of heart. The model is gradually abstracted with timed simulation to preserve properties. A manual Counter-Example-Guided Abstraction and Refinement (CEGAR) framework has been adapted to refine the heart model when spurious counter-examples are found. To demonstrate the closed-loop nature of the problem and heart model refinement, we investigated two clinical cases of Pacemaker Mediated Tachycardia and verified their corresponding correction algorithms in the pacemaker. Along with our tools for code generation from UPPAAL models, this effort enables model-driven design and certification of software for medical devices

    Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    Get PDF
    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field
    corecore