26,056 research outputs found

    Dynamical symmetries and crossovers in a three-spin system with collective dissipation

    Get PDF
    We consider the non-equilibrium dynamics of a simple system consisting of interacting spin-1/21/2 particles subjected to a collective damping. The model is close to situations that can be engineered in hybrid electro/opto-mechanical settings. Making use of large-deviation theory, we find a Gallavotti-Cohen symmetry in the dynamics of the system as well as evidence for the coexistence of two dynamical phases with different activity levels. We show that additional damping processes smoothen out this behavior. Our analytical results are backed up by Monte Carlo simulations that reveal the nature of the trajectories contributing to the different dynamical phases.Comment: 6 pages, 5 figure

    Description of self-synchronization effects in distributed Josephson junction arrays using harmonic analysis and power balance

    Full text link
    Power generation and synchronisation in Josephson junction arrays have attracted attention for a long time. This stems from fundamental interest in nonlinear coupled systems as well as from potential in practical applications. In this paper we study the case of an array of junctions coupled to a distributed transmission line either driven by an external microwave or in a self-oscillating mode. We simplify the theoretical treatment in terms of harmonic analysis and power balance. We apply the model to explain the large operation margins of SNS- and SINIS-junction arrays. We show the validity of the approach by comparing with experiments and simulations with self-oscillating es-SIS junction arrays.Comment: 5 pages, 3 figure

    Kinetic Schemes in Open Interacting Systems

    Full text link
    We discuss utilization of kinetic schemes for description of open interacting systems, focusing on vibrational energy relaxation for an oscillator coupled to a nonequilibirum electronic bath. Standard kinetic equations with constant rate coefficients are obtained under the assumption of timescale separation between system and bath, with the bath dynamics much faster than that of the system of interest. This assumption may break down in certain limits and we show that ignoring this may lead to qualitatively wrong predictions. Connection with more general, nonequilibrium Green's function (NEGF) analysis, is demonstrated. Our considerations are illustrated within generic molecular junction models with electron-vibration coupling.Comment: 22 pages, 4 figure

    Quantum critical states and phase transitions in the presence of non equilibrium noise

    Get PDF
    Quantum critical points are characterized by scale invariant correlations and correspondingly long ranged entanglement. As such, they present fascinating examples of quantum states of matter, the study of which has been an important theme in modern physics. Nevertheless very little is known about the fate of quantum criticality under non equilibrium conditions. In this paper we investigate the effect of external noise sources on quantum critical points. It is natural to expect that noise will have a similar effect to finite temperature, destroying the subtle correlations underlying the quantum critical behavior. Surprisingly we find that in many interesting situations the ubiquitous 1/f noise preserves the critical correlations. The emergent states show intriguing interplay of intrinsic quantum critical and external noise driven fluctuations. We demonstrate this general phenomenon with specific examples in solid state and ultracold atomic systems. Moreover our approach shows that genuine quantum phase transitions can exist even under non equilibrium conditions.Comment: 9 pages, 2 figure
    • 

    corecore