10 research outputs found

    Synchronization with permutation codes and Reed-Solomon codes

    Get PDF
    D.Ing. (Electrical And Electronic Engineering)We address the issue of synchronization, using sync-words (or markers), for encoded data. We focus on data that is encoded using permutation codes or Reed-Solomon codes. For each type of code (permutation code and Reed-Solomon code) we give a synchronization procedure or algorithm such that synchronization is improved compared to when the procedure is not employed. The gure of merit for judging the performance is probability of synchronization (acquisition). The word acquisition is used to indicate that a sync-word is acquired or found in the right place in a frame. A new synchronization procedure for permutation codes is presented. This procedure is about nding sync-words that can be used speci cally with permutation codes, such that acceptable synchronization performance is possible even under channels with frequency selective fading/jamming, such as the power line communication channel. Our new procedure is tested with permutation codes known as distance-preserving mappings (DPMs). DPMs were chosen because they have de ned encoding and decoding procedures. Another new procedure for avoiding symbols in Reed-Solomon codes is presented. We call the procedure symbol avoidance. The symbol avoidance procedure is then used to improve the synchronization performance of Reed-Solomon codes, where known binary sync-words are used for synchronization. We give performance comparison results, in terms of probability of synchronization, where we compare Reed-Solomon with and without symbol avoidance applied

    Space programs summary no. 37-64, volume 2 for the period 1 June to 31 July 1970. The Deep Space Network

    Get PDF
    Mariner Mars 1971 mission support, engineering, and design of Deep Space Networ

    Space programs summary number 37-29, volume iv for the period august 1, 1964 to september 30, 1964. supporting research and advanced development

    Get PDF
    Systems, guidance and control, engineering mechanics and facilities, propulsion, space sciences, and telecommunications researc

    Synthesising executable gene regulatory networks in haematopoiesis from single-cell gene expression data

    Get PDF
    A fundamental challenge in biology is to understand the complex gene regulatory networks which control tissue development in the mammalian embryo, and maintain homoeostasis in the adult. The cell fate decisions underlying these processes are ultimately made at the level of individual cells. Recent experimental advances in biology allow researchers to obtain gene expression profiles at single-cell resolution over thousands of cells at once. These single-cell measurements provide snapshots of the states of the cells that make up a tissue, instead of the population-level averages provided by conventional high-throughput experiments. The aim of this PhD was to investigate the possibility of using this new high resolution data to reconstruct mechanistic computational models of gene regulatory networks. In this thesis I introduce the idea of viewing single-cell gene expression profiles as states of an asynchronous Boolean network, and frame model inference as the problem of reconstructing a Boolean network from its state space. I then give a scalable algorithm to solve this synthesis problem. In order to achieve scalability, this algorithm works in a modular way, treating different aspects of a graph data structure separately before encoding the search for logical rules as Boolean satisfiability problems to be dispatched to a SAT solver. Together with experimental collaborators, I applied this method to understanding the process of early blood development in the embryo, which is poorly understood due to the small number of cells present at this stage. The emergence of blood from Flk1+ mesoderm was studied by single cell expression analysis of 3934 cells at four sequential developmental time points. A mechanistic model recapitulating blood development was reconstructed from this data set, which was consistent with known biology and the bifurcation of blood and endothelium. Several model predictions were validated experimentally, demonstrating that HoxB4 and Sox17 directly regulate the haematopoietic factor Erg, and that Sox7 blocks primitive erythroid development. A general-purpose graphical tool was then developed based on this algorithm, which can be used by biological researchers as new single-cell data sets become available. This tool can deploy computations to the cloud in order to scale up larger high-throughput data sets. The results in this thesis demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the gene regulatory networks that underpin organogenesis. Rapid technological advances in our ability to perform single-cell profiling suggest that my tool will be applicable to other organ systems and may inform the development of improved cellular programming strategies.Microsoft Research PhD Scholarshi

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Advanced performance monitoring in all-optical networks.

    Get PDF
    This thesis investigates advanced optical performance monitoring approaches for future all-optical networks using the synchronous sampling technique. This allows for improved signal quality estimation, fault management and resource allocation through improved control of transmission at the physical layer level. Because of the increased transparency in next generation networks, it is not possible to verify the quality of the signal at each node because of the limited number of optical-electrical-optical conversions, and therefore new non-intrusive mechanisms to achieve signal quality monitoring are needed. The synchronous sampling technique can be deployed to estimate the bit error rate, considered an important quality measure, and hence can be utilised to certify service level agreements between operators and customers. This method also has fault identification capabilities by analysing the shapes of the obtained histograms. Each impairment affects the histogram in a specific way, giving it a unique shape that can be used for root cause analysis. However, chromatic dispersion and polarisation mode dispersion (PMD) can have similar signatures on the histograms obtained at decision times. A novel technique to unambiguously discriminate between these two sources of degradation is proposed in this work. It consists of varying the decision times so that sampling also occurs at both edges of the eye diagram. This approach is referred to as three-section eye sampling technique. In addition, it is shown that this method can be used to accurately assess first order polarisation mode dispersion and can simultaneously estimate the differential group delay (DGD) and the power splitting ratio between the two states of polarisation. Since synchronous sampling is employed, the effect of PMD on the sampling times is also investigated. For the first time, closed form relationship between the shift in sampling time, the DGD and the power splitting ratio between the polarisation states is obtained. Three types of high-Q filter based clock recovery circuits are considered: without pre-processing circuits that can be used for RZ format and with an edge detector or a squarer pre-processing circuits suitable for NRZ format. Moreover, this technique can be used to monitor chromatic dispersion and a large monitoring range of more than 1750ps/nm is experimentally demonstrated at 10Gbit/s. Since it can monitor PMD and dispersion, this method can be deployed to control dynamic PMD or dispersion compensators. Furthermore, this technique offers easy and quick inline eye mask testing and timing jitter assessment

    Report / Institute für Physik

    Get PDF
    The 2016 Report of the Physics Institutes of the Universität Leipzig presents a hopefully interesting overview of our research activities in the past year. It is also testimony of our scientific interaction with colleagues and partners worldwide. We are grateful to our guests for enriching our academic year with their contributions in the colloquium and within our work groups

    Topical Workshop on Electronics for Particle Physics

    Get PDF

    GSI Scientific Report 2004 [GSI Report 2005-1]

    Get PDF
    corecore