350 research outputs found

    The Hamiltonian Inclusion for Nonconvex Velocity Sets

    No full text
    Since Clarke's 1973 proof of the Hamiltonian inclusion for optimal control problems with convex velocity sets, there has been speculation (and, more recently, speculation relating to a stronger, partially convexified version of the Hamiltonian inclusion) as to whether these necessary conditions are valid in the absence of the convexity hypothesis. The issue was in part resolved by Clarke himself when, in 2005, he showed that L∞L^{\infty} local minimizers satisfy the Hamiltonian inclusion. In this paper it is shown, by counterexample, that the Hamiltonian inclusion (and so also the stronger partially convexified Hamiltonian inclusion) are not in general valid for nonconvex velocity sets when the local minimizer in question is merely a W1,1W^{1,1} local minimizer, not an L∞L^{\infty} local minimizer. The counterexample demonstrates that the need to consider L∞L^{\infty} local minimizers, not W1,1W^{1,1} local minimizers, in the proof of the Hamiltonian inclusion for nonconvex velocity sets is fundamental, not just a technical restriction imposed by currently available proof techniques. The paper also establishes the validity of the partially convexified Hamiltonian inclusion for W1,1W^{1,1} local minimizers under a normality assumption, thereby correcting earlier assertions in the literature

    Discrete Approximations and Necessary Optimality Conditions for Functional-Differential Inclusions of Neutral Type

    Get PDF
    This paper deals with necessary optimality conditions for optimal control systems governed by constrained functional-differential inclusions of neutral type. While some results are available for smooth control systems governed by neutral functional-differential equations, we are not familiar with any results for neutral functional-differential inclusions, even with smooth cost functionals in the absence of endpoint constraints. Developing the method of discrete approximations and employing advanced tools of generalized differentiation, we conduct a variational analysis of neutral functional-differential inclusions and obtain new necessary optimality conditions of both Euler-Lagrange and Hamiltonian types

    Nonsmooth Lagrangian mechanics and variational collision integrators

    Get PDF
    Variational techniques are used to analyze the problem of rigid-body dynamics with impacts. The theory of smooth Lagrangian mechanics is extended to a nonsmooth context appropriate for collisions, and it is shown in what sense the system is symplectic and satisfies a Noether-style momentum conservation theorem. Discretizations of this nonsmooth mechanics are developed by using the methodology of variational discrete mechanics. This leads to variational integrators which are symplectic-momentum preserving and are consistent with the jump conditions given in the continuous theory. Specific examples of these methods are tested numerically, and the long-time stable energy behavior typical of variational methods is demonstrated

    Particle dynamics inside shocks in Hamilton-Jacobi equations

    Full text link
    Characteristics of a Hamilton-Jacobi equation can be seen as action minimizing trajectories of fluid particles. For nonsmooth "viscosity" solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that for any convex Hamiltonian there exists a uniquely defined canonical global nonsmooth coalescing flow that extends particle trajectories and determines dynamics inside the shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss relation to the "dissipative anomaly" in the limit of vanishing viscosity.Comment: 15 pages, no figures; to appear in Philos. Trans. R. Soc. series

    Optimal Control of Sweeping Processes in Robotics and Traffic Flow Models

    Get PDF
    The paper is mostly devoted to applications of a novel optimal control theory for perturbed sweeping/Moreau processes to two practical dynamical models. The first model addresses mobile robot dynamics with obstacles, and the second one concerns control and optimization of traffic flows. Describing these models as controlled sweeping processes with pointwise/hard control and state constraints and applying new necessary optimality conditions for such systems allow us to develop efficient procedures to solve naturally formulated optimal control problems for the models under consideration and completely calculate optimal solutions in particular situations
    • …
    corecore