38 research outputs found

    The Hadwiger Number of Jordan Regions Is Unbounded

    Full text link

    On the Hadwiger numbers of starlike disks

    Get PDF
    The Hadwiger number H(J)H(J) of a topological disk JJ in 2\Re^2 is the maximal number of pairwise nonoverlapping translates of JJ that touch JJ. It is well known that for a convex disk, this number is six or eight. A conjecture of A. Bezdek., K. and W. Kuperberg says that the Hadwiger number of a starlike disk is at most eight. A. Bezdek proved that this number is at most seventy five for any starlike disk. In this note, we prove that the Hadwiger number of a starlike disk is at most thirty five. Furthermore, we show that the Hadwiger number of a topological disk JJ such that (\conv J) \setminus J is connected, is six or eight.Comment: 13 pages, 8 figure

    Conflict-Free Coloring of Planar Graphs

    Get PDF
    A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v's neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.Comment: 30 pages, 17 figures; full version (to appear in SIAM Journal on Discrete Mathematics) of extended abstract that appears in Proceeedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 1951-196

    QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs

    Get PDF
    A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2^{O~(n^{2/3})} for Maximum Clique on disk graphs. In stark contrast, Maximum Clique on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2^{n^{1-epsilon}}, unless the Exponential Time Hypothesis fails

    From Homma's theorem to Pick's theorem

    Get PDF
    From Homma’s PL Gauss-Bonnet theorem applied on a PL-complex in a plane, many generalizations of Pick’s theorem on a lattice PL-figure are obtained in a unified geometric way

    Packing and covering balls in graphs excluding a minor

    Full text link
    We prove that for every integer t1t\ge 1 there exists a constant ctc_t such that for every KtK_t-minor-free graph GG, and every set SS of balls in GG, the minimum size of a set of vertices of GG intersecting all the balls of SS is at most ctc_t times the maximum number of vertex-disjoint balls in SS. This was conjectured by Chepoi, Estellon, and Vax\`es in 2007 in the special case of planar graphs and of balls having the same radius.Comment: v3: final versio

    Planar graphs : a historical perspective.

    Get PDF
    The field of graph theory has been indubitably influenced by the study of planar graphs. This thesis, consisting of five chapters, is a historical account of the origins and development of concepts pertaining to planar graphs and their applications. The first chapter serves as an introduction to the history of graph theory, including early studies of graph theory tools such as paths, circuits, and trees. The second chapter pertains to the relationship between polyhedra and planar graphs, specifically the result of Euler concerning the number of vertices, edges, and faces of a polyhedron. Counterexamples and generalizations of Euler\u27s formula are also discussed. Chapter III describes the background in recreational mathematics of the graphs of K5 and K3,3 and their importance to the first characterization of planar graphs by Kuratowski. Further characterizations of planar graphs by Whitney, Wagner, and MacLane are also addressed. The focus of Chapter IV is the history and eventual proof of the four-color theorem, although it also includes a discussion of generalizations involving coloring maps on surfaces of higher genus. The final chapter gives a number of measurements of a graph\u27s closeness to planarity, including the concepts of crossing number, thickness, splitting number, and coarseness. The chapter conclused with a discussion of two other coloring problems - Heawood\u27s empire problem and Ringel\u27s earth-moon problem

    Rooted structures in graphs: a project on Hadwiger's conjecture, rooted minors, and Tutte cycles

    Get PDF
    Hadwigers Vermutung ist eine der anspruchsvollsten Vermutungen für Graphentheoretiker und bietet eine weitreichende Verallgemeinerung des Vierfarbensatzes. Ausgehend von dieser offenen Frage der strukturellen Graphentheorie werden gewurzelte Strukturen in Graphen diskutiert. Eine Transversale einer Partition ist definiert als eine Menge, welche genau ein Element aus jeder Menge der Partition enthält und sonst nichts. Für einen Graphen G und eine Teilmenge T seiner Knotenmenge ist ein gewurzelter Minor von G ein Minor, der T als Transversale seiner Taschen enthält. Sei T eine Transversale einer Färbung eines Graphen, sodass es ein System von kanten-disjunkten Wegen zwischen allen Knoten aus T gibt; dann stellt sich die Frage, ob es möglich ist, die Existenz eines vollständigen, in T gewurzelten Minors zu gewährleisten. Diese Frage ist eng mit Hadwigers Vermutung verwoben: Eine positive Antwort würde Hadwigers Vermutung für eindeutig färbbare Graphen bestätigen. In dieser Arbeit wird ebendiese Fragestellung untersucht sowie weitere Konzepte vorgestellt, welche bekannte Ideen der strukturellen Graphentheorie um eine Verwurzelung erweitern. Beispielsweise wird diskutiert, inwiefern hoch zusammenhängende Teilmengen der Knotenmenge einen hoch zusammenhängenden, gewurzelten Minor erzwingen. Zudem werden verschiedene Ideen von Hamiltonizität in planaren und nicht-planaren Graphen behandelt.Hadwiger's Conjecture is one of the most tantalising conjectures for graph theorists and offers a far-reaching generalisation of the Four-Colour-Theorem. Based on this major issue in structural graph theory, this thesis explores rooted structures in graphs. A transversal of a partition is a set which contains exactly one element from each member of the partition and nothing else. Given a graph G and a subset T of its vertex set, a rooted minor of G is a minor such that T is a transversal of its branch set. Assume that a graph has a transversal T of one of its colourings such that there is a system of edge-disjoint paths between all vertices from T; it comes natural to ask whether such graphs contain a minor rooted at T. This question of containment is strongly related to Hadwiger's Conjecture; indeed, a positive answer would prove Hadwiger's Conjecture for uniquely colourable graphs. This thesis studies the aforementioned question and besides, presents several other concepts of attaching rooted relatedness to ideas in structural graph theory. For instance, whether a highly connected subset of the vertex set forces a highly connected rooted minor. Moreover, several ideas of Hamiltonicity in planar and non-planar graphs are discussed

    Analyticity results in Bernoulli percolation

    Get PDF
    We prove (rigorously) that in 2-dimensional Bernoulli percolation, the percolation density is an analytic function of the parameter in the supercritical interval. For this we introduce some techniques that have further implications. In particular, we prove that the susceptibility is analytic in the subcritical interval for all transitive short- or long-range models, and that p bond c < 1/2 for certain families of triangulations for which Benjamini & Schramm conjectured that p site c ≤ 1/2
    corecore