4,629 research outputs found

    Optimisation of the spark gap parameters for high powered ultrasound applications

    Get PDF
    There is considerable interest in the industrial and commercial applications of high power ultrasound (HPU) generated using pulsed power techniques. These applications include metal peening, the treatment of ores and minerals before extraction, drilling technologies and the comminution and recovery of waste materials. In all of these applications, it is important to optimise the parameters of the discharge causing the shock wave in the working medium to maximise the efficiency of the treatment. In a research project at the University of Strathclyde, some applications of HPU to the treatment of waste to assist in recycling have been investigated. Two systems have been considered, slag from the manufacture of stainless steel and bottle glass. With the slag material, it is intended to separate stainless steel from the silicate matrix to permit its recovery. With the bottle glass, the intention is comminution of the material to allow it to be recycled in a more valuable form. Measurements of the efficiency of these processes have been made in terms of the mass of material processed versus the energy input as the parameters of the discharge gap have been varied. In parallel with this work, measurements have been made using pinducer sensors to determine the energy in HPU pulses generated by discharges under identical conditions. Correlations are made between the efficiency of material treatment and the intensity of the HPU pulse measured in the far field. It is hoped that this approach will allow the optimal gap parameters to be determined using pinducer measurements rather than time consuming trials based around materials processing

    Pasteurización de emulsiones lipídicas con CO2 supercrítico y ultrasonidos de potencia

    Full text link
    Tesis por compendio[ES] Generalmente, se utilizan tratamientos térmicos para la esterilización de emulsiones. Sin embargo, el calentamiento ha demostrado inducir la hidrólisis de lípidos y lecitina. En este sentido, las tecnologías no térmicas están surgiendo en la industria para alcanzar la estabilidad microbiana evitando la pérdida de calidad relacionada con el calor. El CO2 supercrítico (SC-CO2) y los campos eléctricos pulsados (PEF) son tecnologías no térmicas para la inactivación microbiana. Sin embargo, estas técnicas en ocasiones requieren altas intensidades o tiempos de tratamiento largos para garantizar la seguridad del producto. La literatura ha demostrado la capacidad de los ultrasonidos de alta potencia (HPU) para intensificar fenómenos de transferencia de masa y calor. Por lo tanto, su aplicación a tecnologías no térmicas podría ser un enfoque interesante para mejorar la efectividad de la inactivación microbiana. En este contexto, el objetivo fue evaluar el efecto de los tratamientos SC-CO2, PEF y HPU, aplicados de forma individual y combinada, sobre la inactivación de diferentes microorganismos en emulsiones. Para ello, por un lado, se estudió el efecto de la aplicación de HPU a los tratamientos SC-CO2 sobre diferentes tipos de microorganismos y sobre medios con diferente contenido en aceite. Por otro lado, se evaluó el efecto de los tratamientos PEF y HPU individuales y combinados sobre diferentes microorganismos Los resultados mostraron que, en general, la aplicación de HPU intensificó la capacidad de inactivación de SC-CO2. Los HPU probablemente facilitaron la solubilidad del CO2 en el medio y provocaron daños en las células. En este sentido, el análisis microscópico de las células inactivadas reveló importantes cambios morfológicos, incluyendo paredes celulares dañadas y pérdida del contenido citoplasmático. En cambio, los HPU no mejoraron la inactivación de SC-CO2 de las esporas de A. niger en emulsión. El aumento de la presión llevó a una mayor inactivación, a excepción de E. coli en agua, donde no se encontró efecto de la presión. Sin embargo, las presiones por encima de 350 bar no parecen ejercer ninguna inactivación adicional. El aumento de temperatura tuvo un efecto significativo para todos los tratamientos y microorganismos. En cuanto al efecto del medio, se sabe que la presencia de aceite protege a los microorganismos, como se observó en la inactivación de bacterias SC-CO2 en agua y en emulsiones con diferente contenido en aceite. Sin embargo, la aplicación de HPU enmascaró el efecto protector que ejerce el aceite en las emulsiones. En cambio, para las esporas de A. niger no se encontró efecto del medio sobre la efectividad de los tratamientos. En relación al efecto de los tratamientos de SC-CO2 + HPU sobre la calidad de las emulsiones, se encontró un efecto leve de las condiciones del proceso y mediante la selección de condiciones adecuadas de SC-CO2 + HPU, se pudieron obtener cambios mínimos en la calidad de las emulsiones y una inactivación satisfactoria de todos los microorganismos, excepto para las esporas de G. stearothermophilus. Con respecto a los tratamientos de PEF y HPU, no se logró la inactivación completa de las emulsiones con los tratamientos individuales. Sin embargo, cuando el PEF (152,3-176,3 kJ / kg) fue seguido de HPU (3 min), se obtuvieron niveles de inactivación de 8,2, 6,6 y 1,0 ciclos-log para E. coli, A. niger y B. pumilus. Además, la inactivación lograda por el tratamiento con PEF-HPU fue mayor que la de la suma de los tratamientos individuales para todos los microorganismos. Por el contrario, la inactivación lograda por el tratamiento HPU-PEF fue menor que la de la suma de los tratamientos individuales. Por lo tanto, la secuencia más eficaz fue aquella en la que el PEF fue seguido de los HPU. Se puede concluir que, la combinación de HPU con SC-CO2 o PEF generalmente mejoró la inactivación microbiana. En consecuencia, se podrían utili[CA] Generalment, s'utilitzen tractaments tèrmics per a l'esterilització d'emulsions. No obstant això, el calfament ha demostrat induir la hidròlisi de lípids i lecitina. En aquest sentit, les tecnologies no tèrmiques estan sorgint en la indústria per a aconseguir l'estabilitat microbiana evitant la pèrdua de qualitat relacionada amb la calor. El CO¿ supercrític (SC-CO¿) i els camps elèctrics premuts (PEF) són tecnologies no tèrmiques per a la inactivació microbiana. No obstant això, aquestes tècniques a vegades requereixen altes intensitats o temps de tractament llargs per a garantir la seguretat del producte. La literatura ha demostrat la capacitat dels ultrasons d'alta potència (HPU) per a intensificar fenòmens de transferència de massa i calor. Per tant, la seua aplicació a tecnologies no tèrmiques podria ser un enfocament interessant per a millorar l'efectivitat de la inactivació microbiana. En aquest context, l'objectiu va ser avaluar l'efecte dels tractaments SC-CO¿, PEF i HPU, aplicats de manera individual i combinada, sobre la inactivació de diferents microorganismes en emulsions. Per a això, d'una banda, es va estudiar l'efecte de l'aplicació de HPU als tractaments SC-CO¿ sobre diferents tipus de microorganismes i sobre mitjans amb diferent contingut en oli. D'altra banda, es va avaluar l'efecte dels tractaments PEF i HPU individuals i combinats sobre diferents microorganismes Els resultats van mostrar que, en general, l'aplicació de HPU va intensificar la capacitat d'inactivació de SC-CO2. Els HPU probablement van facilitar la solubilitat del CO¿ en el mitjà i van provocar danys en les cèl·lules. En aquest sentit, l'anàlisi microscòpica de les cèl·lules inactivades va revelar importants canvis morfològics, incloent parets cel·lulars danyades i pèrdua del contingut citoplasmàtic. En canvi, els HPU no van millorar la inactivació de SC-CO2 de les espores de A. niger en emulsió. L'augment de la pressió va portar a una major inactivació, a excepció d'E. coli en aigua, on no es va trobar efecte de la pressió. No obstant això, les pressions per damunt de 350 bar no semblen exercir cap inactivació addicional. L'augment de temperatura va tindre un efecte significatiu per a tots els tractaments i microorganismes. Quant a l'efecte del medi, se sap que la presència d'oli protegeix els microorganismes, com es va observar en la inactivació de bacteris SC-CO¿ en aigua i en emulsions amb diferent contingut en oli. No obstant això, l'aplicació de HPU va emmascarar l'efecte protector que exerceix l'oli en les emulsions. En canvi, per a les espores de A. niger no es va trobar efecte del medi sobre l'efectivitat dels tractaments. En relació a aquest efecte dels tractaments de SC-CO2 + HPU sobre la qualitat de les emulsions, es va trobar un efecte lleu de les condicions del procés i mitjançant la selecció de condicions adequades de SC-CO2 + HPU, es van poder obtindre canvis mínims en la qualitat de les emulsions i una inactivació satisfactòria de tots els microorganismes, excepte per a les espores de G. stearothermophilus. Respecte als tractaments de PEF i HPU, no es va aconseguir la inactivació completa de les emulsions amb els tractaments individuals. No obstant això, quan el PEF (152,3-176,3 kJ / kg) va ser seguit de HPU (3 min), es van obtindre nivells d'inactivació de 8,2, 6,6 i 1,0 cicles- log per a E. coli, A. niger i B. pumilus. A més, la inactivació reeixida pel tractament amb PEF- HPU va ser major que la de la suma dels tractaments individuals per a tots els microorganismes. Per contra, la inactivació reeixida pel tractament HPU- PEF va ser menor que la de la suma dels tractaments individuals. Per tant, la seqüència més eficaç va ser aquella en la qual el PEF va ser seguit dels HPU. Es pot concloure que, la combinació de HPU amb SC-CO¿ o PEF generalment va millorar la inactivació microbiana. En conseqüència, es podrien utilitzar temps de[EN] Thermal treatments are generally used for the sterilization of emulsions. However, heating has demonstrated its ability to induce the hydrolysis of lipids and lecithin. In this sense, non-thermal technologies are emerging in the industry with the aim of achieving microbial stability while avoiding the loss of quality related to heat. Supercritical carbon dioxide (SC-CO2) and pulsed electric fields (PEF) are non-thermal technologies for microbial inactivation. However, these techniques have demonstrated to require high treatment intensities or long treatment times to guarantee the product's safety. Therefore, there is still room for the improvement in the use of these technologies. Literature has illustrated the capacity of high power ultrasound (HPU) for the intensification of mass and/or heat transfer phenomena. Therefore, its application to non-thermal technologies could be an interesting approach to enhance the microbial inactivation effectiveness. In this context, the objective was to evaluate the effect of SC-CO2, PEF and HPU treatments, applied in individual and combined form, on the inactivation of different microorganisms in emulsions. In order to achieve this goal, on the one hand, the influence of the implementation of HPU to the SC-CO2 treatments was studied on different types of microorganisms and on media with different oil content. On the other hand, the effect of the individual and combined PEF and HPU treatments was assessed on different microorganisms. Results showed that, generally, the application of HPU intensified the inactivation capacity of SC-CO2. HPU probably enhanced the solubilization of CO2 into the medium and provoked damages in the cells. In this regard, the microscopy analysis of the inactivated cells revealed important morphological changes, including damaged cell walls and an important loss of the cytoplasmic content. Nevertheless, HPU did not improved the SC-CO2 inactivation of A. niger spores in emulsion. The increase of the pressure led to a higher inactivation, except for E. coli in water, where no effect of pressure was found. However, pressures above 350 bar did not seem to exert any additional inactivation. The increase of the temperature had a significant effect for all treatments and microorganisms. Regarding the effect of the medium, the presence of oil is known to protect microorganisms, as was observed in the SC-CO2 inactivation of bacteria in water and in emulsions with different oil content. However, the application of HPU masked the protective effect exerted by the oil in the emulsions. On the contrary, for A. niger spores no effect of the media was found on the effectiveness of the treatments In relation to the effect of the SC-CO2 + HPU treatments on the quality of the treated emulsions, only a mild effect of the process conditions was found and by the selection of suitable SC-CO2 + HPU conditions, minimal changes on the quality of the emulsions and a satisfactory inactivation for all the microorganisms, except for G. stearothermophilus spores, can be obtained. Regarding PEF and HPU treatments, the complete inactivation in the emulsions was not achieved with the individual treatments. However, when PEF (152.3-176.3 kJ/kg) was followed by HPU (3 min), inactivation levels of 8.2, 6.6 and 1.0 log-cycles were obtained for E. coli, A. niger and B. pumilus, respectively. Moreover, the inactivation achieved by the PEF-HPU treatment was higher than the sum of the individual treatments for all microorganisms. On the contrary, the inactivation achieved by HPU-PEF treatment was lower than that of the sum of the individual treatments. Thus, the most effective sequence for the combined treatment was the one in which PEF was followed by HPU. It can be concluded that, the combination of HPU with SC-CO2 or PEF generally improved the microbial inactivation. Consequently, reasonable processing times and mild process conditions could be used.Gómez Gómez, Á. (2021). Pasteurization of Lipid Emulsions with Supercritical CO2 and High Power Ultrasound [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/175486TESISCompendi

    The epidemiology of acute encephalitis.

    No full text
    Encephalitis means inflammation of the brain matter. Despite being a rare condition, encephalitis is of public health importance worldwide because it has high morbidity and mortality. Yet, many details about its epidemiology have yet to be elucidated. This review attempts to summarise what is known about the epidemiology of the infective causes of encephalitis and is based on a literature search of the Medline archives. Infection is the most common cause identified, with viruses being the most important known aetiological agents. Incidence varies between studies but is generally between 3.5 and 7.4 per 100,000 patient-years. Encephalitis affects peoples of all ages; however, incidence is higher in the paediatric population. Although both sexes are affected, most studies have shown a slight predominance in males. Encephalitis occurs worldwide; some aetiologies have a global distribution (herpesviruses) while others are geographically restricted (arboviruses). Although definite epidemiological trends are evident, it is difficult to make generalisations as few population-based studies exist, most cases are not reported to health authorities, and many possible pathogens are implicated but in most cases a cause is never found. A better understanding of the epidemiology of this devastating disease will pave the way for better prevention and control strategies
    corecore