93,877 research outputs found

    POWERPLAY: Training an Increasingly General Problem Solver by Continually Searching for the Simplest Still Unsolvable Problem

    Get PDF
    Most of computer science focuses on automatically solving given computational problems. I focus on automatically inventing or discovering problems in a way inspired by the playful behavior of animals and humans, to train a more and more general problem solver from scratch in an unsupervised fashion. Consider the infinite set of all computable descriptions of tasks with possibly computable solutions. The novel algorithmic framework POWERPLAY (2011) continually searches the space of possible pairs of new tasks and modifications of the current problem solver, until it finds a more powerful problem solver that provably solves all previously learned tasks plus the new one, while the unmodified predecessor does not. Wow-effects are achieved by continually making previously learned skills more efficient such that they require less time and space. New skills may (partially) re-use previously learned skills. POWERPLAY's search orders candidate pairs of tasks and solver modifications by their conditional computational (time & space) complexity, given the stored experience so far. The new task and its corresponding task-solving skill are those first found and validated. The computational costs of validating new tasks need not grow with task repertoire size. POWERPLAY's ongoing search for novelty keeps breaking the generalization abilities of its present solver. This is related to Goedel's sequence of increasingly powerful formal theories based on adding formerly unprovable statements to the axioms without affecting previously provable theorems. The continually increasing repertoire of problem solving procedures can be exploited by a parallel search for solutions to additional externally posed tasks. POWERPLAY may be viewed as a greedy but practical implementation of basic principles of creativity. A first experimental analysis can be found in separate papers [53,54].Comment: 21 pages, additional connections to previous work, references to first experiments with POWERPLA

    Storing RDF as a Graph

    Get PDF
    RDF is the first W3C standard for enriching information resources of the Web with detailed meta data. The semantics of RDF data is defined using a RDF schema. The most expressive language for querying RDF is RQL, which enables querying of semantics. In order to support RQL, a RDF storage system has to map the RDF graph model onto its storage structure. Several storage systems for RDF data have been developed, which store the RDF data as triples in a relational database. To evaluate an RQL query on those triple structures, the graph model has to be rebuilt from the triples. In this paper, we presented a new approach to store RDF data as a graph in a object-oriented database. Our approach avoids the costly rebuilding of the graph and efficiently queries the storage structure directly. The advantages of our approach have been shown by performance test on our prototype implementation OO-Store

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure
    corecore