243,400 research outputs found

    RASCP: Providing for a Secure Group Communication Plane Using RFID

    Get PDF
    Predominantly large distributed networks currently provide support for group oriented protocols and applications Regardless of the type of distributed network there is a need to provide communication privacy and data integrity to the information exchange amongst the group members This paper introduces a protocol named Authentication based Secure Communication Plane adopts the commutative RSA algorithm to maintain data integrity The proposed protocol not only eliminates the overheads resulting from key distribution and key compromise attacks but also provide for information security in the presence of colluded group members Radio Frequency Identification tags is used for group member identification The RACP protocol is compared with the RFID extended Secure Lock group communication protocol and its efficiency in terms of the computational complexity involved is discussed in this pape

    Iterated Inhomogeneous Polynomials

    Get PDF
    Let pp be a polynomial, and let p(i)(x)p^{(i)}(x) be the result of iterating the polynomial ii times, starting at an input xx. The case where p(x)p(x) is the homogeneous polynomial x2x^2 has been extensively studied in cryptography. Due to its associated group structure, iterating this polynomial gives rise to a number of interesting cryptographic applications such as time-lock puzzles and verifiable delay functions. On the other hand, the associated group structure leads to quantum attacks on the applications. In this work, we consider whether inhomogeneous polynomials, such as 2x2+3x+12x^2+3x+1, can have useful cryptographic applications. We focus on the case of polynomials mod 2n2^n, due to some useful mathematical properties. The natural group structure no longer exists, so the quantum attacks but also applications no longer immediately apply. We nevertheless show classical polynomial-time attacks on analogs of hard problems from the homogeneous setting. We conclude by proposing new computational assumptions relating to these inhomogeneous polynomials, with cryptographic applications

    DART-MPI: An MPI-based Implementation of a PGAS Runtime System

    Full text link
    A Partitioned Global Address Space (PGAS) approach treats a distributed system as if the memory were shared on a global level. Given such a global view on memory, the user may program applications very much like shared memory systems. This greatly simplifies the tasks of developing parallel applications, because no explicit communication has to be specified in the program for data exchange between different computing nodes. In this paper we present DART, a runtime environment, which implements the PGAS paradigm on large-scale high-performance computing clusters. A specific feature of our implementation is the use of one-sided communication of the Message Passing Interface (MPI) version 3 (i.e. MPI-3) as the underlying communication substrate. We evaluated the performance of the implementation with several low-level kernels in order to determine overheads and limitations in comparison to the underlying MPI-3.Comment: 11 pages, International Conference on Partitioned Global Address Space Programming Models (PGAS14

    The Raincore API for clusters of networking elements

    Get PDF
    Clustering technology offers a way to increase overall reliability and performance of Internet information flow by strengthening one link in the chain without adding others. We have implemented this technology in a distributed computing architecture for network elements. The architecture, called Raincore, originated in the Reliable Array of Independent Nodes, or RAIN, research collaboration between the California Institute of Technology and the US National Aeronautics and Space Agency's Jet Propulsion Laboratory. The RAIN project focused on developing high-performance, fault-tolerant, portable clustering technology for spaceborne computing . The technology that emerged from this project became the basis for a spinoff company, Rainfinity, which has the exclusive intellectual property rights to the RAIN technology. The authors describe the Raincore conceptual architecture and distributed services, which are designed to make it easy for developers to port their applications to run on top of a cluster of networking elements. We include two applications: a Web server prototype that was part of the original RAIN research project and a commercial firewall cluster product from Rainfinity

    Practical Fine-grained Privilege Separation in Multithreaded Applications

    Full text link
    An inherent security limitation with the classic multithreaded programming model is that all the threads share the same address space and, therefore, are implicitly assumed to be mutually trusted. This assumption, however, does not take into consideration of many modern multithreaded applications that involve multiple principals which do not fully trust each other. It remains challenging to retrofit the classic multithreaded programming model so that the security and privilege separation in multi-principal applications can be resolved. This paper proposes ARBITER, a run-time system and a set of security primitives, aimed at fine-grained and data-centric privilege separation in multithreaded applications. While enforcing effective isolation among principals, ARBITER still allows flexible sharing and communication between threads so that the multithreaded programming paradigm can be preserved. To realize controlled sharing in a fine-grained manner, we created a novel abstraction named ARBITER Secure Memory Segment (ASMS) and corresponding OS support. Programmers express security policies by labeling data and principals via ARBITER's API following a unified model. We ported a widely-used, in-memory database application (memcached) to ARBITER system, changing only around 100 LOC. Experiments indicate that only an average runtime overhead of 5.6% is induced to this security enhanced version of application

    ClouNS - A Cloud-native Application Reference Model for Enterprise Architects

    Full text link
    The capability to operate cloud-native applications can generate enormous business growth and value. But enterprise architects should be aware that cloud-native applications are vulnerable to vendor lock-in. We investigated cloud-native application design principles, public cloud service providers, and industrial cloud standards. All results indicate that most cloud service categories seem to foster vendor lock-in situations which might be especially problematic for enterprise architectures. This might sound disillusioning at first. However, we present a reference model for cloud-native applications that relies only on a small subset of well standardized IaaS services. The reference model can be used for codifying cloud technologies. It can guide technology identification, classification, adoption, research and development processes for cloud-native application and for vendor lock-in aware enterprise architecture engineering methodologies
    • …
    corecore