17,989 research outputs found

    On Partial Identification of the Pure Direct Effect

    Get PDF
    In causal mediation analysis, nonparametric identification of the pure (natural) direct effect typically relies on, in addition to no unobserved pre-exposure confounding, fundamental assumptions of (i) so-called "cross-world-counterfactuals" independence and (ii) no exposure- induced confounding. When the mediator is binary, bounds for partial identification have been given when neither assumption is made, or alternatively when assuming only (ii). We extend existing bounds to the case of a polytomous mediator, and provide bounds for the case assuming only (i). We apply these bounds to data from the Harvard PEPFAR program in Nigeria, where we evaluate the extent to which the effects of antiretroviral therapy on virological failure are mediated by a patient's adherence, and show that inference on this effect is somewhat sensitive to model assumptions.Comment: 24 pages, 4 figure

    Predictive haemodynamics in a one-dimensional human carotid artery bifurcation. Part II: application to graft design

    No full text
    A Bayesian surrogate modelling technique is proposed that may be able to predict an optimal bypass graft configuration for patients suffering with stenosis in the internal carotid artery (ICA). At the outset, this statistical technique is considered as a means for identifying key geometric parameters influencing haemodynamics in the human carotid bifurcation. This methodology uses a design of experiments (DoE) technique to generate candidate geometries for flow analysis. A pulsatile one dimensional Navier-Stokes solver incorporating fluid-wall interactions for a Newtonian fluid which predicts pressure and flow in the carotid bifurcation (comprising a stenosed segment in the internal carotid artery) is used for the numerical simulations. Two metrics, pressure variation factor (PVF) and maximum pressure (pm) are employed to directly compare the global and local effects, respectively, of variations in the geometry. The values of PVF and pm are then used to construct two Bayesian surrogate models. These models are statistically analysed to visualise how each geometric parameter influences PVF and pm. Percentage of stenosis is found to influence these pressure based metrics more than any other geometric parameter. Later, we identify bypass grafts with optimal geometric and material properties which have low values of PVF on five test cases with 70%, 75%, 80%, 85% and 90% stenosis in the ICA, respectively

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared
    corecore