1,708 research outputs found

    The Graph Motif problem parameterized by the structure of the input graph

    Full text link
    The Graph Motif problem was introduced in 2006 in the context of biological networks. It consists of deciding whether or not a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Graph Motif has been mostly analyzed from the standpoint of parameterized complexity. The main parameters which came into consideration were the size of the multiset and the number of colors. Though, in the many applications of Graph Motif, the input graph originates from real-life and has structure. Motivated by this prosaic observation, we systematically study its complexity relatively to graph structural parameters. For a wide range of parameters, we give new or improved FPT algorithms, or show that the problem remains intractable. For the FPT cases, we also give some kernelization lower bounds as well as some ETH-based lower bounds on the worst case running time. Interestingly, we establish that Graph Motif is W[1]-hard (while in W[P]) for parameter max leaf number, which is, to the best of our knowledge, the first problem to behave this way.Comment: 24 pages, accepted in DAM, conference version in IPEC 201

    The Graph Motif Problem Parameterized by the Structure of the Input Graph

    Get PDF
    The Graph Motif problem was introduced in 2006 in the context of biological networks. It consists of deciding whether or not a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Graph Motif has been analyzed from the standpoint of parameterized complexity. The main parameters which came into consideration were the size of the multiset and the number of colors. Though, in the many applications of Graph Motif, the input graph originates from real-life and has structure. Motivated by this prosaic observation, we systematically study its complexity relatively to graph structural parameters. For a wide range of parameters, we give new or improved FPT algorithms, or show that the problem remains intractable. Interestingly, we establish that Graph Motif is W[1]-hard (while in W[P]) for parameter max leaf number, which is, to the best of our knowledge, the first problem to behave this way

    Some results on more flexible versions of Graph Motif

    Full text link
    The problems studied in this paper originate from Graph Motif, a problem introduced in 2006 in the context of biological networks. Informally speaking, it consists in deciding if a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Due to the high rate of noise in the biological data, more flexible definitions of the problem have been outlined. We present in this paper two inapproximability results for two different optimization variants of Graph Motif: one where the size of the solution is maximized, the other when the number of substitutions of colors to obtain the motif from the solution is minimized. We also study a decision version of Graph Motif where the connectivity constraint is replaced by the well known notion of graph modularity. While the problem remains NP-complete, it allows algorithms in FPT for biologically relevant parameterizations

    Finding and counting vertex-colored subtrees

    Full text link
    The problems studied in this article originate from the Graph Motif problem introduced by Lacroix et al. in the context of biological networks. The problem is to decide if a vertex-colored graph has a connected subgraph whose colors equal a given multiset of colors MM. It is a graph pattern-matching problem variant, where the structure of the occurrence of the pattern is not of interest but the only requirement is the connectedness. Using an algebraic framework recently introduced by Koutis et al., we obtain new FPT algorithms for Graph Motif and variants, with improved running times. We also obtain results on the counting versions of this problem, proving that the counting problem is FPT if M is a set, but becomes W[1]-hard if M is a multiset with two colors. Finally, we present an experimental evaluation of this approach on real datasets, showing that its performance compares favorably with existing software.Comment: Conference version in International Symposium on Mathematical Foundations of Computer Science (MFCS), Brno : Czech Republic (2010) Journal Version in Algorithmic

    Fast Witness Extraction Using a Decision Oracle

    Full text link
    The gist of many (NP-)hard combinatorial problems is to decide whether a universe of nn elements contains a witness consisting of kk elements that match some prescribed pattern. For some of these problems there are known advanced algebra-based FPT algorithms which solve the decision problem but do not return the witness. We investigate techniques for turning such a YES/NO-decision oracle into an algorithm for extracting a single witness, with an objective to obtain practical scalability for large values of nn. By relying on techniques from combinatorial group testing, we demonstrate that a witness may be extracted with O(klogn)O(k\log n) queries to either a deterministic or a randomized set inclusion oracle with one-sided probability of error. Furthermore, we demonstrate through implementation and experiments that the algebra-based FPT algorithms are practical, in particular in the setting of the kk-path problem. Also discussed are engineering issues such as optimizing finite field arithmetic.Comment: Journal version, 16 pages. Extended abstract presented at ESA'1

    The parameterised complexity of counting connected subgraphs and graph motifs

    Get PDF
    We introduce a family of parameterised counting problems on graphs, p-#Induced Subgraph With Property(Φ), which generalises a number of problems which have previously been studied. This paper focuses on the case in which Φ defines a family of graphs whose edge-minimal elements all have bounded treewidth; this includes the special case in which Φ describes the property of being connected. We show that exactly counting the number of connected induced k-vertex subgraphs in an n-vertex graph is #W[1]-hard, but on the other hand there exists an FPTRAS for the problem; more generally, we show that there exists an FPTRAS for p-#Induced Subgraph With Property(Φ) whenever Φ is monotone and all the minimal graphs satisfying Φ have bounded treewidth. We then apply these results to a counting version of the Graph Motif problem

    Kernelization and Sparseness: the case of Dominating Set

    Get PDF
    We prove that for every positive integer rr and for every graph class G\mathcal G of bounded expansion, the rr-Dominating Set problem admits a linear kernel on graphs from G\mathcal G. Moreover, when G\mathcal G is only assumed to be nowhere dense, then we give an almost linear kernel on G\mathcal G for the classic Dominating Set problem, i.e., for the case r=1r=1. These results generalize a line of previous research on finding linear kernels for Dominating Set and rr-Dominating Set. However, the approach taken in this work, which is based on the theory of sparse graphs, is radically different and conceptually much simpler than the previous approaches. We complement our findings by showing that for the closely related Connected Dominating Set problem, the existence of such kernelization algorithms is unlikely, even though the problem is known to admit a linear kernel on HH-topological-minor-free graphs. Also, we prove that for any somewhere dense class G\mathcal G, there is some rr for which rr-Dominating Set is W[22]-hard on G\mathcal G. Thus, our results fall short of proving a sharp dichotomy for the parameterized complexity of rr-Dominating Set on subgraph-monotone graph classes: we conjecture that the border of tractability lies exactly between nowhere dense and somewhere dense graph classes.Comment: v2: new author, added results for r-Dominating Sets in bounded expansion graph

    Graph Motif Problems Parameterized by Dual

    Get PDF
    Let G=(V,E) be a vertex-colored graph, where C is the set of colors used to color V. The Graph Motif (or GM) problem takes as input G, a multiset M of colors built from C, and asks whether there is a subset S subseteq V such that (i) G[S] is connected and (ii) the multiset of colors obtained from S equals M. The Colorful Graph Motif problem (or CGM) is a constrained version of GM in which M=C, and the List-Colored Graph Motif problem (or LGM) is the extension of GM in which each vertex v of V may choose its color from a list L(v) of colors. We study the three problems GM, CGM and LGM, parameterized by l:=|V|-|M|. In particular, for general graphs, we show that, assuming the strong exponential-time hypothesis, CGM has no (2-epsilon)^l * |V|^{O(1)}-time algorithm, which implies that a previous algorithm, running in O(2^lcdot |E|) time is optimal. We also prove that LGM is W[1]-hard even if we restrict ourselves to lists of at most two colors. If we constrain the input graph to be a tree, then we show that, in contrast to CGM, GM can be solved in O(4^l *|V|) time but admits no polynomial kernel, while CGM can be solved in O(sqrt{2}^l + |V|) time and admits a polynomial kernel
    corecore