148 research outputs found

    Demonstration of Augmented Lifecycle Space in Heterogeneous Environment

    Get PDF

    Recovering from a Decade: A Systematic Mapping of Information Retrieval Approaches to Software Traceability

    Get PDF
    Engineers in large-scale software development have to manage large amounts of information, spread across many artifacts. Several researchers have proposed expressing retrieval of trace links among artifacts, i.e. trace recovery, as an Information Retrieval (IR) problem. The objective of this study is to produce a map of work on IR-based trace recovery, with a particular focus on previous evaluations and strength of evidence. We conducted a systematic mapping of IR-based trace recovery. Of the 79 publications classified, a majority applied algebraic IR models. While a set of studies on students indicate that IR-based trace recovery tools support certain work tasks, most previous studies do not go beyond reporting precision and recall of candidate trace links from evaluations using datasets containing less than 500 artifacts. Our review identified a need of industrial case studies. Furthermore, we conclude that the overall quality of reporting should be improved regarding both context and tool details, measures reported, and use of IR terminology. Finally, based on our empirical findings, we present suggestions on how to advance research on IR-based trace recovery

    Mining and linking crowd-based software engineering how-to screencasts

    Get PDF
    In recent years, crowd-based content in the form of screencast videos has gained in popularity among software engineers. Screencasts are viewed and created for different purposes, such as a learning aid, being part of a software project’s documentation, or as a general knowledge sharing resource. For organizations to remain competitive in attracting and retaining their workforce, they must adapt to these technological and social changes in software engineering practices. In this thesis, we propose a novel methodology for mining and integrating crowd-based multi- media content in existing workflows to help provide software engineers of different levels of experience and roles access to a documentation they are familiar with or prefer. As a result, we first aim to gain insights on how a user’s background and the task to be performed influence the use of certain documentation media. We focus on tutorial screencasts to identify their important information sources and provide insights on their usage, advantages, and disadvantages from a practitioner’s perspective. To that end, we conduct a survey of software engineers. We discuss how software engineers benefit from screencasts as well as challenges they face in using screencasts as project documentation. Our survey results revealed that screencasts and question and answers sites are among the most popular crowd-based information sources used by software engineers. Also, the level of experience and the role or reason for resorting to a documentation source affects the types of documentation used by software engineers. The results of our survey support our motivation in this thesis and show that for screencasts, high quality content and a narrator are very important components for users. Unfortunately, the binary format of videos makes analyzing video content difficult. As a result, dissecting and filtering multimedia information based on its relevance to a given project is an inherently difficult task. Therefore, it is necessary to provide automated approaches for mining and linking this crowd-based multimedia documentation to their relevant software artifacts. In this thesis, we apply LDA-based (Latent Dirichlet Allocation) mining approaches that take as input a set of screencast artifacts, such as GUI (Graphical User Interface) text (labels) and spoken words, to perform information extraction and, therefore, increase the availability of both textual and multimedia documentation for various stakeholders of a software product. For example, this allows screencasts to be linked to other software artifacts such as source code to help software developers/maintainers have access to the implementation details of an application feature. We also present applications of our proposed methodology that include: 1) an LDA-based mining approach that extracts use case scenarios in text format from screencasts, 2) an LDA-based approach that links screencasts to their relevant artifacts (e.g., source code), and 3) a Semantic Web-based approach to establish direct links between vulnerability exploitation screencasts and their relevant vulnerability descriptions in the National Vulnerability Database (NVD) and indirectly link screencasts to their relevant Maven dependencies. To evaluate the applicability of the proposed approach, we report on empirical case studies conducted on existing screencasts that describe different use case scenarios of the WordPress and Firefox open source applications or vulnerability exploitation scenarios

    From Bugs to Decision Support – Leveraging Historical Issue Reports in Software Evolution

    Get PDF
    Software developers in large projects work in complex information landscapes and staying on top of all relevant software artifacts is an acknowledged challenge. As software systems often evolve over many years, a large number of issue reports is typically managed during the lifetime of a system, representing the units of work needed for its improvement, e.g., defects to fix, requested features, or missing documentation. Efficient management of incoming issue reports requires the successful navigation of the information landscape of a project. In this thesis, we address two tasks involved in issue management: Issue Assignment (IA) and Change Impact Analysis (CIA). IA is the early task of allocating an issue report to a development team, and CIA is the subsequent activity of identifying how source code changes affect the existing software artifacts. While IA is fundamental in all large software projects, CIA is particularly important to safety-critical development. Our solution approach, grounded on surveys of industry practice as well as scientific literature, is to support navigation by combining information retrieval and machine learning into Recommendation Systems for Software Engineering (RSSE). While the sheer number of incoming issue reports might challenge the overview of a human developer, our techniques instead benefit from the availability of ever-growing training data. We leverage the volume of issue reports to develop accurate decision support for software evolution. We evaluate our proposals both by deploying an RSSE in two development teams, and by simulation scenarios, i.e., we assess the correctness of the RSSEs' output when replaying the historical inflow of issue reports. In total, more than 60,000 historical issue reports are involved in our studies, originating from the evolution of five proprietary systems for two companies. Our results show that RSSEs for both IA and CIA can help developers navigate large software projects, in terms of locating development teams and software artifacts. Finally, we discuss how to support the transfer of our results to industry, focusing on addressing the context dependency of our tool support by systematically tuning parameters to a specific operational setting
    corecore