67,789 research outputs found

    Exact block-wise optimization in group lasso and sparse group lasso for linear regression

    Full text link
    The group lasso is a penalized regression method, used in regression problems where the covariates are partitioned into groups to promote sparsity at the group level. Existing methods for finding the group lasso estimator either use gradient projection methods to update the entire coefficient vector simultaneously at each step, or update one group of coefficients at a time using an inexact line search to approximate the optimal value for the group of coefficients when all other groups' coefficients are fixed. We present a new method of computation for the group lasso in the linear regression case, the Single Line Search (SLS) algorithm, which operates by computing the exact optimal value for each group (when all other coefficients are fixed) with one univariate line search. We perform simulations demonstrating that the SLS algorithm is often more efficient than existing computational methods. We also extend the SLS algorithm to the sparse group lasso problem via the Signed Single Line Search (SSLS) algorithm, and give theoretical results to support both algorithms.Comment: We have been made aware of the earlier work by Puig et al. (2009) which derives the same result for the (non-sparse) group lasso setting. We leave this manuscript available as a technical report, to serve as a reference for the previously untreated sparse group lasso case, and for timing comparisons of various methods in the group lasso setting. The manuscript is updated to include this referenc

    A Unified Successive Pseudo-Convex Approximation Framework

    Get PDF
    In this paper, we propose a successive pseudo-convex approximation algorithm to efficiently compute stationary points for a large class of possibly nonconvex optimization problems. The stationary points are obtained by solving a sequence of successively refined approximate problems, each of which is much easier to solve than the original problem. To achieve convergence, the approximate problem only needs to exhibit a weak form of convexity, namely, pseudo-convexity. We show that the proposed framework not only includes as special cases a number of existing methods, for example, the gradient method and the Jacobi algorithm, but also leads to new algorithms which enjoy easier implementation and faster convergence speed. We also propose a novel line search method for nondifferentiable optimization problems, which is carried out over a properly constructed differentiable function with the benefit of a simplified implementation as compared to state-of-the-art line search techniques that directly operate on the original nondifferentiable objective function. The advantages of the proposed algorithm are shown, both theoretically and numerically, by several example applications, namely, MIMO broadcast channel capacity computation, energy efficiency maximization in massive MIMO systems and LASSO in sparse signal recovery.Comment: submitted to IEEE Transactions on Signal Processing; original title: A Novel Iterative Convex Approximation Metho

    Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

    Full text link
    This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the total-variation norm, ||Wx||_1 where W is arbitrary, or a combination thereof. In addition, the paper also introduces a number of technical contributions such as a novel continuation scheme, a novel approach for controlling the step size, and some new results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with state-of-the-art methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient large-scale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms.Comment: The TFOCS software is available at http://tfocs.stanford.edu This version has updated reference

    A framework for deflated and augmented Krylov subspace methods

    Get PDF
    We consider deflation and augmentation techniques for accelerating the convergence of Krylov subspace methods for the solution of nonsingular linear algebraic systems. Despite some formal similarity, the two techniques are conceptually different from preconditioning. Deflation (in the sense the term is used here) "removes" certain parts from the operator making it singular, while augmentation adds a subspace to the Krylov subspace (often the one that is generated by the singular operator); in contrast, preconditioning changes the spectrum of the operator without making it singular. Deflation and augmentation have been used in a variety of methods and settings. Typically, deflation is combined with augmentation to compensate for the singularity of the operator, but both techniques can be applied separately. We introduce a framework of Krylov subspace methods that satisfy a Galerkin condition. It includes the families of orthogonal residual (OR) and minimal residual (MR) methods. We show that in this framework augmentation can be achieved either explicitly or, equivalently, implicitly by projecting the residuals appropriately and correcting the approximate solutions in a final step. We study conditions for a breakdown of the deflated methods, and we show several possibilities to avoid such breakdowns for the deflated MINRES method. Numerical experiments illustrate properties of different variants of deflated MINRES analyzed in this paper.Comment: 24 pages, 3 figure
    • …
    corecore