10,586 research outputs found

    On the Expressive Power of Deep Polynomial Neural Networks

    Full text link
    We study deep neural networks with polynomial activations, particularly their expressive power. For a fixed architecture and activation degree, a polynomial neural network defines an algebraic map from weights to polynomials. The image of this map is the functional space associated to the network, and it is an irreducible algebraic variety upon taking closure. This paper proposes the dimension of this variety as a precise measure of the expressive power of polynomial neural networks. We obtain several theoretical results regarding this dimension as a function of architecture, including an exact formula for high activation degrees, as well as upper and lower bounds on layer widths in order for deep polynomials networks to fill the ambient functional space. We also present computational evidence that it is profitable in terms of expressiveness for layer widths to increase monotonically and then decrease monotonically. Finally, we link our study to favorable optimization properties when training weights, and we draw intriguing connections with tensor and polynomial decompositions

    Transport Analysis of Infinitely Deep Neural Network

    Full text link
    We investigated the feature map inside deep neural networks (DNNs) by tracking the transport map. We are interested in the role of depth (why do DNNs perform better than shallow models?) and the interpretation of DNNs (what do intermediate layers do?) Despite the rapid development in their application, DNNs remain analytically unexplained because the hidden layers are nested and the parameters are not faithful. Inspired by the integral representation of shallow NNs, which is the continuum limit of the width, or the hidden unit number, we developed the flow representation and transport analysis of DNNs. The flow representation is the continuum limit of the depth or the hidden layer number, and it is specified by an ordinary differential equation with a vector field. We interpret an ordinary DNN as a transport map or a Euler broken line approximation of the flow. Technically speaking, a dynamical system is a natural model for the nested feature maps. In addition, it opens a new way to the coordinate-free treatment of DNNs by avoiding the redundant parametrization of DNNs. Following Wasserstein geometry, we analyze a flow in three aspects: dynamical system, continuity equation, and Wasserstein gradient flow. A key finding is that we specified a series of transport maps of the denoising autoencoder (DAE). Starting from the shallow DAE, this paper develops three topics: the transport map of the deep DAE, the equivalence between the stacked DAE and the composition of DAEs, and the development of the double continuum limit or the integral representation of the flow representation. As partial answers to the research questions, we found that deeper DAEs converge faster and the extracted features are better; in addition, a deep Gaussian DAE transports mass to decrease the Shannon entropy of the data distribution

    Machine Learning on Graphs: A Model and Comprehensive Taxonomy

    Full text link
    There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning methods have generally fallen into three main categories, based on the availability of labeled data. The first, network embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these methods, and enables future research in the area

    Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach

    Full text link
    The Fisher information matrix (FIM) is a fundamental quantity to represent the characteristics of a stochastic model, including deep neural networks (DNNs). The present study reveals novel statistics of FIM that are universal among a wide class of DNNs. To this end, we use random weights and large width limits, which enables us to utilize mean field theories. We investigate the asymptotic statistics of the FIM's eigenvalues and reveal that most of them are close to zero while the maximum eigenvalue takes a huge value. Because the landscape of the parameter space is defined by the FIM, it is locally flat in most dimensions, but strongly distorted in others. Moreover, we demonstrate the potential usage of the derived statistics in learning strategies. First, small eigenvalues that induce flatness can be connected to a norm-based capacity measure of generalization ability. Second, the maximum eigenvalue that induces the distortion enables us to quantitatively estimate an appropriately sized learning rate for gradient methods to converge.Comment: Accepted at AISTATS2019. Main text: 10 pages, 2 figures. Supplementary material: 9 pages, 2 figures, typos correcte

    Critical Points of Neural Networks: Analytical Forms and Landscape Properties

    Full text link
    Due to the success of deep learning to solving a variety of challenging machine learning tasks, there is a rising interest in understanding loss functions for training neural networks from a theoretical aspect. Particularly, the properties of critical points and the landscape around them are of importance to determine the convergence performance of optimization algorithms. In this paper, we provide full (necessary and sufficient) characterization of the analytical forms for the critical points (as well as global minimizers) of the square loss functions for various neural networks. We show that the analytical forms of the critical points characterize the values of the corresponding loss functions as well as the necessary and sufficient conditions to achieve global minimum. Furthermore, we exploit the analytical forms of the critical points to characterize the landscape properties for the loss functions of these neural networks. One particular conclusion is that: The loss function of linear networks has no spurious local minimum, while the loss function of one-hidden-layer nonlinear networks with ReLU activation function does have local minimum that is not global minimum

    Visualizing the Loss Landscape of Neural Nets

    Full text link
    Neural network training relies on our ability to find "good" minimizers of highly non-convex loss functions. It is well-known that certain network architecture designs (e.g., skip connections) produce loss functions that train easier, and well-chosen training parameters (batch size, learning rate, optimizer) produce minimizers that generalize better. However, the reasons for these differences, and their effects on the underlying loss landscape, are not well understood. In this paper, we explore the structure of neural loss functions, and the effect of loss landscapes on generalization, using a range of visualization methods. First, we introduce a simple "filter normalization" method that helps us visualize loss function curvature and make meaningful side-by-side comparisons between loss functions. Then, using a variety of visualizations, we explore how network architecture affects the loss landscape, and how training parameters affect the shape of minimizers.Comment: NIPS 2018 (extended version, 10.5 pages), code is available at https://github.com/tomgoldstein/loss-landscap

    Mathematics of Deep Learning

    Full text link
    Recently there has been a dramatic increase in the performance of recognition systems due to the introduction of deep architectures for representation learning and classification. However, the mathematical reasons for this success remain elusive. This tutorial will review recent work that aims to provide a mathematical justification for several properties of deep networks, such as global optimality, geometric stability, and invariance of the learned representations

    Is deeper better? It depends on locality of relevant features

    Full text link
    It has been recognized that a heavily overparameterized artificial neural network exhibits surprisingly good generalization performance in various machine-learning tasks. Recent theoretical studies have made attempts to unveil the mystery of the overparameterization. In most of those previous works, the overparameterization is achieved by increasing the width of the network, while the effect of increasing the depth has remained less well understood. In this work, we investigate the effect of increasing the depth within an overparameterized regime. To gain an insight into the advantage of depth, we introduce local and global labels as abstract but simple classification rules. It turns out that the locality of the relevant feature for a given classification rule plays a key role; our experimental results suggest that deeper is better for local labels, whereas shallower is better for global labels. We also compare the results of finite networks with those of the neural tangent kernel (NTK), which is equivalent to an infinitely wide network with a proper initialization and an infinitesimal learning rate. It is shown that the NTK does not correctly capture the depth dependence of the generalization performance, which indicates the importance of the feature learning rather than the lazy learning.Comment: 13+4 page

    A Differential Topological View of Challenges in Learning with Feedforward Neural Networks

    Full text link
    Among many unsolved puzzles in theories of Deep Neural Networks (DNNs), there are three most fundamental challenges that highly demand solutions, namely, expressibility, optimisability, and generalisability. Although there have been significant progresses in seeking answers using various theories, e.g. information bottleneck theory, sparse representation, statistical inference, Riemannian geometry, etc., so far there is no single theory that is able to provide solutions to all these challenges. In this work, we propose to engage the theory of differential topology to address the three problems. By modelling the dataset of interest as a smooth manifold, DNNs can be considered as compositions of smooth maps between smooth manifolds. Specifically, our work offers a differential topological view of loss landscape of DNNs, interplay between width and depth in expressibility, and regularisations for generalisability. Finally, in the setting of deep representation learning, we further apply the quotient topology to investigate the architecture of DNNs, which enables to capture nuisance factors in data with respect to a specific learning task.Comment: 17 pages, 3 figure

    Lexicographic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models

    Full text link
    With an eye toward understanding complexity control in deep learning, we study how infinitesimal regularization or gradient descent optimization lead to margin maximizing solutions in both homogeneous and non-homogeneous models, extending previous work that focused on infinitesimal regularization only in homogeneous models. To this end we study the limit of loss minimization with a diverging norm constraint (the "constrained path"), relate it to the limit of a "margin path" and characterize the resulting solution. For non-homogeneous ensemble models, which output is a sum of homogeneous sub-models, we show that this solution discards the shallowest sub-models if they are unnecessary. For homogeneous models, we show convergence to a "lexicographic max-margin solution", and provide conditions under which max-margin solutions are also attained as the limit of unconstrained gradient descent.Comment: ICML Camera ready versio
    • …
    corecore