4,342 research outputs found

    An Upper Bound on the Average Size of Silhouettes

    Get PDF
    It is a widely observed phenomenon in computer graphics that the size of the silhouette of a polyhedron is much smaller than the size of the whole polyhedron. This paper provides, for the first time, theoretical evidence supporting this for a large class of objects, namely for polyhedra that approximate surfaces in some reasonable way; the surfaces may be non-convex and non-differentiable and they may have boundaries. We prove that such polyhedra have silhouettes of expected size O(n)O(\sqrt{n}) where the average is taken over all points of view and n is the complexity of the polyhedron

    Surface Shape Perception in Volumetric Stereo Displays

    Get PDF
    In complex volume visualization applications, understanding the displayed objects and their spatial relationships is challenging for several reasons. One of the most important obstacles is that these objects can be translucent and can overlap spatially, making it difficult to understand their spatial structures. However, in many applications, for example medical visualization, it is crucial to have an accurate understanding of the spatial relationships among objects. The addition of visual cues has the potential to help human perception in these visualization tasks. Descriptive line elements, in particular, have been found to be effective in conveying shape information in surface-based graphics as they sparsely cover a geometrical surface, consistently following the geometry. We present two approaches to apply such line elements to a volume rendering process and to verify their effectiveness in volume-based graphics. This thesis reviews our progress to date in this area and discusses its effects and limitations. Specifically, it examines the volume renderer implementation that formed the foundation of this research, the design of the pilot study conducted to investigate the effectiveness of this technique, the results obtained. It further discusses improvements designed to address the issues revealed by the statistical analysis. The improved approach is able to handle visualization targets with general shapes, thus making it more appropriate to real visualization applications involving complex objects

    On the appearance of translucent edges

    Get PDF
    Edges in images of translucent objects are very different from edges in images of opaque objects. The physical causes for these differences are hard to characterize analytically and are not well understood. This paper considers one class of translucency edges - those caused by a discontinuity in surface orientation - and describes the physical causes of their appearance. We simulate thousands of translucency edge profiles using many different scattering material parameters, and we explain the resulting variety of edge patterns by qualitatively analyzing light transport. We also discuss the existence of shape and material metamers, or combinations of distinct shape or material parameters that generate the same edge profile. This knowledge is relevant to visual inference tasks that involve translucent objects, such as shape or material estimation.National Science Foundation (U.S.) (IIS 1161564)National Science Foundation (U.S.) (IIS 1012454)National Science Foundation (U.S.) (IIS 1212928)National Science Foundation (U.S.) (IIS 1011919)National Institutes of Health (U.S.) (R01- EY019262-02)National Institutes of Health (U.S.) (R21-EY019741-02
    • …
    corecore