751 research outputs found

    Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh Nagumo system

    Get PDF
    We investigate the organization of mixed-mode oscillations in the self-coupled FitzHugh-Nagumo system. These types of oscillations can be explained as a combination of relaxation oscillations and small-amplitude oscillations controlled by canard solutions that are associated with a folded singularity on a critical manifold. The self-coupled FitzHugh-Nagumo system has a cubic critical manifold for a range of parameters, and an associated folded singularity of node-type. Hence, there exist corresponding attracting and repelling slow manifolds that intersect in canard solutions. We present a general technique for the computation of two-dimensional slow manifolds (smooth surfaces). It is based on a boundary value problem approach where the manifolds are computed as one-parameter families of orbit segments. Visualization of the computed surfaces gives unprecedented insight into the geometry of the system. In particular, our techniques allow us to find and visualize canard solutions as the intersection curves of the attracting and repelling slow manifolds. © 2008 American Institute of Physics

    Excitable neurons, firing threshold manifolds and canards

    Get PDF
    We investigate firing threshold manifolds in a mathematical model of an excitable neuron. The model analyzed investigates the phenomenon of post-inhibitory rebound spiking due to propofol anesthesia and is adapted from McCarthy et al. (SIAM J. Appl. Dyn. Syst. 11(4):1674-1697, 2012). Propofol modulates the decay time-scale of an inhibitory GABAa synaptic current. Interestingly, this system gives rise to rebound spiking within a specific range of propofol doses. Using techniques from geometric singular perturbation theory, we identify geometric structures, known as canards of folded saddle-type, which form the firing threshold manifolds. We find that the position and orientation of the canard separatrix is propofol dependent. Thus, the speeds of relevant slow synaptic processes are encoded within this geometric structure. We show that this behavior cannot be understood using a static, inhibitory current step protocol, which can provide a single threshold for rebound spiking but cannot explain the observed cessation of spiking for higher propofol doses. We then compare the analyses of dynamic and static synaptic inhibition, showing how the firing threshold manifolds of each relate, and why a current step approach is unable to fully capture the behavior of this model

    Mixed-mode oscillations in a multiple time scale phantom bursting system

    Get PDF
    In this work we study mixed mode oscillations in a model of secretion of GnRH (Gonadotropin Releasing Hormone). The model is a phantom burster consisting of two feedforward coupled FitzHugh-Nagumo systems, with three time scales. The forcing system (Regulator) evolves on the slowest scale and acts by moving the slow nullcline of the forced system (Secretor). There are three modes of dynamics: pulsatility (transient relaxation oscillation), surge (quasi steady state) and small oscillations related to the passage of the slow nullcline through a fold point of the fast nullcline. We derive a variety of reductions, taking advantage of the mentioned features of the system. We obtain two results; one on the local dynamics near the fold in the parameter regime corresponding to the presence of small oscillations and the other on the global dynamics, more specifically on the existence of an attracting limit cycle. Our local result is a rigorous characterization of small canards and sectors of rotation in the case of folded node with an additional time scale, a feature allowing for a clear geometric argument. The global result gives the existence of an attracting unique limit cycle, which, in some parameter regimes, remains attracting and unique even during passages through a canard explosion.Comment: 38 pages, 16 figure

    Hunting French Ducks in a Noisy Environment

    Get PDF
    We consider the effect of Gaussian white noise on fast-slow dynamical systems with one fast and two slow variables, containing a folded-node singularity. In the absence of noise, these systems are known to display mixed-mode oscillations, consisting of alternating large- and small-amplitude oscillations. We quantify the effect of noise and obtain critical noise intensities above which the small-amplitude oscillations become hidden by fluctuations. Furthermore we prove that the noise can cause sample paths to jump away from so-called canard solutions with high probability before deterministic orbits do. This early-jump mechanism can drastically influence the local and global dynamics of the system by changing the mixed-mode patterns.Comment: 60 pages, 9 figure
    corecore