2,658 research outputs found

    The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node (C)

    Get PDF
    Agraïments: The second author is supported by CAPES/DGU grant number BEX 9439/12-9 and CAPES/CSF-PVE's 88887.068602/2014-00 and CAPES/CSF-PVE's 88881.030454/2013-01 and CNPq grant "Projeto Universal 472796/2013-5".Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert's 16th problem [Hilbert, 1900, Hilbert, 1902], are still open for this family. Our goal is to make a global study of the family QsnSN of all real quadratic polynomial differential systems which have a finite semi-elemental saddle-node and an infinite saddle-node formed by the collision of two infinite singular points. This family can be divided into three different subfamilies, all of them with the finite saddle-node in the origin of the plane with the eigenvectors on the axes and with the eigenvector associated with the zero eigenvalue on the horizontal axis and (A) with the infinite saddle-node in the horizontal axis, (B) with the infinite saddle-node in the vertical axis and (C) with the infinite saddle-node in the bisector of the first and third quadrants. These three subfamilies modulo the action of the affine group and time homotheties are three-dimensional and we give the bifurcation diagram of their closure with respect to specific normal forms, in the three-dimensional real projective space. The subfamilies (A) and (B) have already been studied [Artés et al., 2013b] and in this paper we provide the complete study of the geometry of the last family (C). The bifurcation diagram for the subfamily (C) yields 371 topologically distinct phase portraits with and without limit cycles for systems in the closure QsnSN(C) within the representatives of QsnSN(C) given by a chosen normal form. Algebraic invariants are used to construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The bifurcation set of QsnSN(C) is not only algebraic due to the presence of some surfaces found numerically. All points in these surfaces correspond to either connections of separatrices, or the presence of a double limit cycle

    Topological Classification of Quadratic Polynomial Differential Systems with a Finite Semi-Elemental Triple Saddle

    Get PDF
    Agraïments: the second author is is partially supported by CNPq grant "Projeto Universal" 472796/2013-5, by CAPES CSF-PVE-88881.030454/2013-01, by Projeto Temático FAPESP number 2014/00304-2. The third author is supported by CNPq-PDE 232336/2014-8.The study of planar quadratic differential systems is very important not only because they appear in many areas of applied mathematics but due to their richness in structure, stability and questions concerning limit cycles, for example. Even though many papers have been written on this class of systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilbert's 16th problem [Hilbert, 1900, 1902], are still open for this family. In this article, we make a global study of the family QTS of all real quadratic polynomial differential systems which have a finite semi-elemental triple saddle (triple saddle with exactly one zero eigenvalue). This family modulo the action of the affine group and time homotheties is three-dimensional and we give its bifurcation diagram with respect to a normal form, in the three-dimensional real space of the parameters of this normal form. This bifur- cation diagram yields 27 phase portraits for systems in QTS counting phase portraits with and without limit cycles. Algebraic invariants are used to construct the bifurcation set and we present the phase portraits on the Poincar ́e disk. The bifurcation set is not just algebraic due to the presence of a surface found numerically, whose points correspond to connections of separatrices

    Phase portraits of the quadratic polynomial Liénard differential systems

    Get PDF
    We classify the global phase portraits in the Poincaré disc of the quadratic polynomial Liénard differential systems ˙ x = y, ˙ y = (ax + b)y + cx2 + dx + e, where (x,y) ∈R2 are the variables and a,b,c,d,e are real parameters

    Structurally unstable quadratic vector fields of codimension two : families possessing either a cusp point or two finite saddle-nodes

    Get PDF
    The goal of this paper is to contribute to the classification of the phase portraits of planar quadratic differential systems according to their structural stability. Artés et al. (Mem Am Math Soc 134:639, 1998) proved that there exist 44 structurally stable topologically distinct phase portraits in the Poincaré disc modulo limit cycles in this family, and Artés et al. (Structurally unstable quadratic vector fields of codimension one, Springer, Berlin, 2018) showed the existence of at least 204 (at most 211) structurally unstable topologically distinct phase portraits of codimension-one quadratic systems, modulo limit cycles. In this work we begin the classification of planar quadratic systems of codimension two in the structural stability. Combining the sets of codimension-one quadratic vector fields one to each other, we obtain ten new sets. Here we consider set AA obtained by the coalescence of two finite singular points, yielding either a triple saddle, or a triple node, or a cusp point, or two saddle-nodes. We obtain all the possible topological phase portraits of set AA and prove their realization. We got 34 new topologically distinct phase portraits in the Poincaré disc modulo limit cycles. Moreover, in this paper we correct a mistake made by the authors in the book of Artés et al. (Structurally unstable quadratic vector fields of codimension one, Springer, Berlin, 2018) and we reduce to 203 the number of topologically distinct phase portrait of codimension one modulo limit cycles

    Geometric configurations of singularities for quadratic differential systems with three distinct real simple finite singularities

    Get PDF
    Agraïments: The third author is supported by NSERC. The fourth author is also supported by the grant 12.839.08.05F from SCSTD of ASM and partially by NSERC.In this work we classify, with respect to the geometric equivalence relation, the global configurations of singularities, finite and infinite, of quadratic differential systems possessing exactly three distinct finite simple singularities. This relation is finer than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci (or saddles) of different orders. Such distinctions are, however, important in the production of limit cycles close to the foci (or loops) in perturbations of the systems. The notion of geometric equivalence relation of configurations of singularities allows us to incorporate all these important geometric features which can be expressed in purely algebraic terms. The geomet ric classification of all configurations of singularities, finite and infinite, of quadratic systems was initiated in a work published in 2013 when the classification was done for systems with total multiplicity m f of finite singularities less than or equal to one. That work was continued in an article which is due to appear in 2014 where the geometric classification of configurations of singularities was done for the case m f = 2. In this article we go one step further and obtain the geometric classification of singularities, finite and infinite, for the subclass mentioned above. We obtain 147 geometrically distinct configurations of singularities for this family. We give here the global bifurcation diagram of configurations of singularities, both finite and infinite, with respect to the geometric equivalence relation, for this class of systems. The bifurcation set of this diagram is algebraic. The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants, a fact which gives us an algorithm for determining the geometric configuration of singularities for any quadratic system in this particular class

    Topological and polynomial invariants, moduli spaces, in classification problems of polynomial vector fields

    Get PDF
    We describe the origin and evolution of ideas on topological and polynomial invariants and their interaction, in problems of classification of polynomial vector fields. The concept of moduli space is discussed in the last section and we indicate its value in understanding the dynamics of families of such systems. Our interest here is in the concepts and the way they interact in the process of topologically classifying polynomial vector fields. We survey the literature giving an ample list of references and we illustrate the ideas on the testing ground of families of quadratic vector fields. In particular, the role of polynomial invariants is illustrated in the proof of our theorem in the section next to last. These concepts have proven their worth in a number of classification results, among them the most recent work on the geometric classification of the whole class of quadratic vector fields, according to their configurations of infinite singularities. An analog work including both finite and infinite singularities of the whole quadratic class, joint work with J. C. Artés, J. Llibre, and N. Vulpe, is in progress

    Global configurations of singularities for quadratic differential systems with exactly two finite singularities of total multiplicity four

    Get PDF
    El títol de la versió pre-print de l'article és: Geometric classification of configurations of singularities with total finite multiplicity four for a class of quadratic systemsAgraïments/Ajudes: The third author is supported by CAPES/DGU BEX 9439-12-9. The fourth and fifth author are supported by NSERC-RGPIN (8528-2010). The fifth author is also supported by the grant 12.839.08.05F from SCSTD of ASM..In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. This relation is deeper than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci (or saddles) of different orders. Such distinctions are however important in the production of limit cycles close to the foci in perturbations of the systems. The notion of geometric equivalence relation of configurations of singularities allows to incorporate all these important geometric features which can be expressed in purely algebraic terms. This equivalence relation is also deeper than the qualitative equivalence relation introduced in [20]. The geometric classification of all configurations of singularities, finite and infinite, of quadratic systems was initiated in [3] where the classification was done for systems with total multiplicity mf of finite singularities less than or equal to one. That work was continued in [4] where the geometric classification was done for the case mf = 2 and two more papers [5] and [6], which cover the case mf = 3. In this article we obtain the geometric classification of singularities, finite and infinite, for the three subclasses of quadratic differential systems with mf = 4 possessing exactly two finite singularities, namely: (i) systems with two double complex singularities (18 configurations); (ii) systems with two double real singularities (33 configurations) and (iii) systems with one triple and one simple real singularities (123 configurations). We also give here the global bifurcation diagrams of configurations of singularities, both finite and infinite, with respect to the geometric equivalence relation, for these subclasses of systems. The bifurcation set of this diagram is algebraic. The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants, fact which gives an algorithm for determining the geometric configuration of singularities for any quadratic system

    Global phase portraits of the quadratic systems having a singular and irreducible invariant curve of degree 3

    Get PDF
    Any singular irreducible cubic curve (or simply, cubic) after an affine transformation can be written as either y2=x3 , or y2=x2(x+1) , or y2=x2(x-1) . We classify the phase portraits of all quadratic polynomial differential systems having the invariant cubic y2=x2(x+1) . We prove that there are 63 different topological phase portraits for such quadratic polynomial differential systems. We control all the bifurcations among these distinct topological phase portraits. These systems have no limit cycles. Only three phase portraits have a center, 19 of these phase portraits have one polycycle, three of these phase portraits have two polycycles. The maximum number of separartices that have these phase portraits is 26 and the minimum number is nine, the maximum number of canonical regions of these phase portraits is seven and the minimum is three.C. Pantazi is also partially supported by the grant PID-2021-122954NB-100 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”.Peer ReviewedPostprint (published version
    corecore