64,105 research outputs found

    The Geostationary Carbon Process Mapper

    Get PDF
    The Geostationary Carbon Process Mapper (GCPM) is an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The measurement strategy delivers a process based understanding of the carbon cycle that is accurate and extensible from city to regional and continental scales. This understanding comes from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected up to 10 times per day at high spatial resolution (~4km × 4km) from geostationary orbit (GEO). These measurements will capture the spatial and temporal variability of the carbon cycle across diurnal, synoptic, seasonal and interannual time scales. The CO2/CH4/CO/CF measurement suite has been specifically selected because their combination provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize key uncertainties in the flow of carbon between the atmosphere and surface since they place constraints on both biogenic uptake and release as well as on combustion emissions. Additionally, GCPM's combination of high-resolution mapping and high measurement frequency provide quasi-continuous monitoring, effectively eliminating atmospheric transport uncertainties from source/sink inversion modeling. GCPM uses a single instrument, the “Geostationary Fourier Transform Spectrometer (GeoFTS)” to make measurements in the near infrared spectral region at high spectral resolution. The GeoFTS is a half meter cube size instrument designed to be a secondary “hosted” payload on a commercial GEO satellite. NASA and other government agencies have adopted the hosted payload implementation approach because it substantially reduces the overall mission cost. This paper presents a hosted payload implementation approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point, to affordably advance the scientific understating of carbon cycle processes and climate change

    Spatio-Temporal Sentiment Hotspot Detection Using Geotagged Photos

    Full text link
    We perform spatio-temporal analysis of public sentiment using geotagged photo collections. We develop a deep learning-based classifier that predicts the emotion conveyed by an image. This allows us to associate sentiment with place. We perform spatial hotspot detection and show that different emotions have distinct spatial distributions that match expectations. We also perform temporal analysis using the capture time of the photos. Our spatio-temporal hotspot detection correctly identifies emerging concentrations of specific emotions and year-by-year analyses of select locations show there are strong temporal correlations between the predicted emotions and known events.Comment: To appear in ACM SIGSPATIAL 201

    From white elephants to space elephants

    Get PDF

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    Need for expanded environmental measurement capabilities in geosynchronous Earth orbit

    Get PDF
    The proliferation of environmental satellites in low altitude earth orbit (LEO) has demonstrated the usefulness of earth remote sensing from space. As use of the technology grows, the limitations of LEO missions become more apparent. Many inadequacies can be met by remote sensing from geosynchronous earth orbits (GEO) that can provide high temporal resolution, consistent viewing of specific earth targets, long sensing dwell times with varying sun angles, stereoscopic coverage, and correlative measurements with ground and LEO observations. An environmental platform in GEO is being studied by NASA. Small research satellite missions in GEO were studied (1990) at GSFC. Some recent independent assessments of NASA Earth Science Programs recommend accelerating the earlier deployment of smaller missions

    Fundamentals of Earth Observation Policy: Examples for German and European Missions

    Get PDF
    Several European countries have developed their national high resolution earth observation systems. Some of them are operated in close cooperation with industrial partners, others are dual-use missions earmarked to fulfil the needs of national security. In addition, the European Space Agency and the European Commission have initiated the Global Monitoring for Environment and Security (GMES) project. Therein, a fleet of satellites (SENTINELs) will deliver data for European wide information services, augmented by data from national and non-European earth observation systems. This new scenario needs clear guidance and regulations. Besides the principles for operations of earth observation missions – as set out in UN principles on earth observation – the operators of very high resolution missions require clear governmental acts which international users can be served and which data might be restricted in distribution. For national science and the SENTINEL-missions, a policy for free and open access is being developed to guarantee a maximum use of the data. Exemplified on the German national missions and the European GMES scenario, data policies and regulations for existing and new earth observation missions will be explained

    Describing and Understanding Neighborhood Characteristics through Online Social Media

    Full text link
    Geotagged data can be used to describe regions in the world and discover local themes. However, not all data produced within a region is necessarily specifically descriptive of that area. To surface the content that is characteristic for a region, we present the geographical hierarchy model (GHM), a probabilistic model based on the assumption that data observed in a region is a random mixture of content that pertains to different levels of a hierarchy. We apply the GHM to a dataset of 8 million Flickr photos in order to discriminate between content (i.e., tags) that specifically characterizes a region (e.g., neighborhood) and content that characterizes surrounding areas or more general themes. Knowledge of the discriminative and non-discriminative terms used throughout the hierarchy enables us to quantify the uniqueness of a given region and to compare similar but distant regions. Our evaluation demonstrates that our model improves upon traditional Naive Bayes classification by 47% and hierarchical TF-IDF by 27%. We further highlight the differences and commonalities with human reasoning about what is locally characteristic for a neighborhood, distilled from ten interviews and a survey that covered themes such as time, events, and prior regional knowledgeComment: Accepted in WWW 2015, 2015, Florence, Ital

    A novel design concept for space-based polar remote sensing

    Get PDF
    Space-based remote sensing of the Earth is conducted from a fleet of spacecraft in two basic orbital positions, near-polar low-Earth orbits and geosynchronous orbits, with each offering its own advantages and disadvantages. Low-Earth orbits provide high-resolution observations at the expense of large-scale contextual information, while geosynchronous orbits provide near-global, continuous coverage at reduced resolutions. However, due to the rapidly decreasing horizontal resolution data-products derived from geosynchronous orbits are of degraded value beyond approximately 55 degrees of latitude. A novel mission design is introduced to enable continuous observation of all longitudes at latitudes between 55 and 90 degrees with an observation zenith angle of less than 60 degrees, without the use of composite images. A single Soyuz launch is used to deliver three spacecraft to 12-hr, highly eccentric true-polar orbits with apogee at 40170 km and electric propulsion is used to maintain the orbit apse-line coincident with the Earth’s poles. It is shown that the science payload mass can be traded against the mission duration, with a payload mass varying between 120 – 90 kg for mission durations between 3 – 5 years, respectively. It is further shown that the payload would have approximately of 2kW of power available during operations as the electric propulsion system is not operated at these times. Whilst the payload mass is less than a typical remote sensing platform in geosynchronous orbit it is considered that the concept would offer an excellent technology demonstrator mission for operational missions, whilst also enabling unique and valuable science
    • …
    corecore