17 research outputs found

    Infinite computations with random oracles

    Full text link
    We consider the following problem for various infinite time machines. If a real is computable relative to large set of oracles such as a set of full measure or just of positive measure, a comeager set, or a nonmeager Borel set, is it already computable? We show that the answer is independent from ZFC for ordinal time machines (OTMs) with and without ordinal parameters and give a positive answer for most other machines. For instance, we consider, infinite time Turing machines (ITTMs), unresetting and resetting infinite time register machines (wITRMs, ITRMs), and \alpha-Turing machines for countable admissible ordinals \alpha

    Computability Theory (hybrid meeting)

    Get PDF
    Over the last decade computability theory has seen many new and fascinating developments that have linked the subject much closer to other mathematical disciplines inside and outside of logic. This includes, for instance, work on enumeration degrees that has revealed deep and surprising relations to general topology, the work on algorithmic randomness that is closely tied to symbolic dynamics and geometric measure theory. Inside logic there are connections to model theory, set theory, effective descriptive set theory, computable analysis and reverse mathematics. In some of these cases the bridges to seemingly distant mathematical fields have yielded completely new proofs or even solutions of open problems in the respective fields. Thus, over the last decade, computability theory has formed vibrant and beneficial interactions with other mathematical fields. The goal of this workshop was to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work

    Computability Theory

    Get PDF
    Computability is one of the fundamental notions of mathematics, trying to capture the effective content of mathematics. Starting from Gödel’s Incompleteness Theorem, it has now blossomed into a rich area with strong connections with other areas of mathematical logic as well as algebra and theoretical computer science

    Computability Theory

    Get PDF
    Computability and computable enumerability are two of the fundamental notions of mathematics. Interest in effectiveness is already apparent in the famous Hilbert problems, in particular the second and tenth, and in early 20th century work of Dehn, initiating the study of word problems in group theory. The last decade has seen both completely new subareas develop as well as remarkable growth in two-way interactions between classical computability theory and areas of applications. There is also a great deal of work on algorithmic randomness, reverse mathematics, computable analysis, and in computable structure theory/computable model theory. The goal of this workshop is to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work

    Laver and set theory

    Full text link
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.Accepted manuscrip

    A journey through computability, topology and analysis

    Get PDF
    This thesis is devoted to the exploration of the complexity of some mathematical problems using the framework of computable analysis and descriptive set theory. We will especially focus on Weihrauch reducibility, as a means to compare the uniform computational strength of problems. After a short introduction of the relevant background notions, we investigate the uniform computational content of the open and clopen Ramsey theorems. In particular, since there is not a canonical way to phrase these theorems as multi-valued functions, we identify 8 different multi-valued functions (5 corresponding to the open Ramsey theorem and 3 corresponding to the clopen Ramsey theorem) and study their degree from the point of view of Weihrauch, strong Weihrauch and arithmetic Weihrauch reducibility. We then discuss some new operators on multi-valued functions and study their algebraic properties and the relations with other previously studied operators on problems. These notions turn out to be extremely relevant when exploring the Weihrauch degree of the problem DS of computing descending sequences in ill-founded linear orders. They allow us to show that DS, and the Weihrauch equivalent problem BS of finding bad sequences through non-well quasi-orders, while being very "hard" to solve, are rather weak in terms of uniform computational strength. We then generalize DS and BS by considering Gamma-presented orders, where Gamma is a Borel pointclass or Delta11, Sigma11, Pi11. We study the obtained DS-hierarchy and BS-hierarchy of problems in comparison with the (effective) Baire hierarchy and show that they do not collapse at any finite level. Finally, we focus on the characterization, from the point of view of descriptive set theory, of some conditions involving the notions of Hausdorff/Fourier dimension and of Salem sets. We first work in the hyperspace K([0,1]) of compact subsets of [0,1] and show that the closed Salem sets form a Pi03-complete family. This is done by characterizing the complexity of the family of sets having sufficiently large Hausdorff or Fourier dimension. We also show that the complexity does not change if we increase the dimension of the ambient space and work in K([0,1]^d). We also generalize the results by relaxing the compactness of the ambient space, and show that the closed Salem sets are still Pi03-complete when we endow K(R^d) with the Fell topology. A similar result holds also for the Vietoris topology. We conclude by showing how these results can be used to characterize the Weihrauch degree of the functions computing the Hausdorff and Fourier dimensions
    corecore