16,082 research outputs found

    Techniques for the Synthesis of Reversible Toffoli Networks

    Get PDF
    This paper presents novel techniques for the synthesis of reversible networks of Toffoli gates, as well as improvements to previous methods. Gate count and technology oriented cost metrics are used. Our synthesis techniques are independent of the cost metrics. Two new iterative synthesis procedure employing Reed-Muller spectra are introduced and shown to complement earlier synthesis approaches. The template simplification suggested in earlier work is enhanced through introduction of a faster and more efficient template application algorithm, updated (shorter) classification of the templates, and presentation of the new templates of sizes 7 and 9. A novel ``resynthesis'' approach is introduced wherein a sequence of gates is chosen from a network, and the reversible specification it realizes is resynthesized as an independent problem in hopes of reducing the network cost. Empirical results are presented to show that the methods are effective both in terms of the realization of all 3x3 reversible functions and larger reversible benchmark specifications.Comment: 20 pages, 5 figure

    Quantum Processors and Controllers

    Get PDF
    In this paper is presented an abstract theory of quantum processors and controllers, special kind of quantum computational network defined on a composite quantum system with two parts: the controlling and controlled subsystems. Such approach formally differs from consideration of quantum control as some external influence on a system using some set of Hamiltonians or quantum gates. The model of programmed quantum controllers discussed in present paper is based on theory of universal deterministic quantum processors (programmable gate arrays). Such quantum devices may simulate arbitrary evolution of quantum system and so demonstrate an example of universal quantum control. Keywords: Quantum, Computer, Control, Processor, UniversalComment: LaTeXe, 7 pp, 2 col, v3: revised and extended (+50%), PhysCon0

    Hybrid photonic entanglement: Realization, characterization and applications

    Full text link
    We show that the quantum disentanglement eraser implemented on a two-photon system from parametric down-conversion is a general method to create hybrid photonic entanglement, namely the entanglement between different degrees of freedom of the photon pair. To demonstrate this, we generate and characterize a source with tunable degree of hybrid entanglement between two qubits, one encoded in the transverse momentum and position of a photon, and the other in the polarization of its partner. In addition, we show that a simple extension of our setup enables the generation of two-photon qubit-qudit hybrid entangled states. Finally, we discuss the advantages that this type of entanglement can bring for an optical quantum network.Comment: Published versio

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    A Library-Based Synthesis Methodology for Reversible Logic

    Full text link
    In this paper, a library-based synthesis methodology for reversible circuits is proposed where a reversible specification is considered as a permutation comprising a set of cycles. To this end, a pre-synthesis optimization step is introduced to construct a reversible specification from an irreversible function. In addition, a cycle-based representation model is presented to be used as an intermediate format in the proposed synthesis methodology. The selected intermediate format serves as a focal point for all potential representation models. In order to synthesize a given function, a library containing seven building blocks is used where each building block is a cycle of length less than 6. To synthesize large cycles, we also propose a decomposition algorithm which produces all possible minimal and inequivalent factorizations for a given cycle of length greater than 5. All decompositions contain the maximum number of disjoint cycles. The generated decompositions are used in conjunction with a novel cycle assignment algorithm which is proposed based on the graph matching problem to select the best possible cycle pairs. Then, each pair is synthesized by using the available components of the library. The decomposition algorithm together with the cycle assignment method are considered as a binding method which selects a building block from the library for each cycle. Finally, a post-synthesis optimization step is introduced to optimize the synthesis results in terms of different costs.Comment: 24 pages, 8 figures, Microelectronics Journal, Elsevie
    corecore