355 research outputs found

    {VoG}: {Summarizing} and Understanding Large Graphs

    Get PDF
    How can we succinctly describe a million-node graph with a few simple sentences? How can we measure the "importance" of a set of discovered subgraphs in a large graph? These are exactly the problems we focus on. Our main ideas are to construct a "vocabulary" of subgraph-types that often occur in real graphs (e.g., stars, cliques, chains), and from a set of subgraphs, find the most succinct description of a graph in terms of this vocabulary. We measure success in a well-founded way by means of the Minimum Description Length (MDL) principle: a subgraph is included in the summary if it decreases the total description length of the graph. Our contributions are three-fold: (a) formulation: we provide a principled encoding scheme to choose vocabulary subgraphs; (b) algorithm: we develop \method, an efficient method to minimize the description cost, and (c) applicability: we report experimental results on multi-million-edge real graphs, including Flickr and the Notre Dame web graph

    VoG: Summarizing and Understanding Large Graphs

    Get PDF
    How can we succinctly describe a million-node graph with a few simple sentences? How can we measure the "importance" of a set of discovered subgraphs in a large graph? These are exactly the problems we focus on. Our main ideas are to construct a "vocabulary" of subgraph-types that often occur in real graphs (e.g., stars, cliques, chains), and from a set of subgraphs, find the most succinct description of a graph in terms of this vocabulary. We measure success in a well-founded way by means of the Minimum Description Length (MDL) principle: a subgraph is included in the summary if it decreases the total description length of the graph. Our contributions are three-fold: (a) formulation: we provide a principled encoding scheme to choose vocabulary subgraphs; (b) algorithm: we develop \method, an efficient method to minimize the description cost, and (c) applicability: we report experimental results on multi-million-edge real graphs, including Flickr and the Notre Dame web graph.Comment: SIAM International Conference on Data Mining (SDM) 201

    Interpretable multiclass classification by MDL-based rule lists

    Get PDF
    Interpretable classifiers have recently witnessed an increase in attention from the data mining community because they are inherently easier to understand and explain than their more complex counterparts. Examples of interpretable classification models include decision trees, rule sets, and rule lists. Learning such models often involves optimizing hyperparameters, which typically requires substantial amounts of data and may result in relatively large models. In this paper, we consider the problem of learning compact yet accurate probabilistic rule lists for multiclass classification. Specifically, we propose a novel formalization based on probabilistic rule lists and the minimum description length (MDL) principle. This results in virtually parameter-free model selection that naturally allows to trade-off model complexity with goodness of fit, by which overfitting and the need for hyperparameter tuning are effectively avoided. Finally, we introduce the Classy algorithm, which greedily finds rule lists according to the proposed criterion. We empirically demonstrate that Classy selects small probabilistic rule lists that outperform state-of-the-art classifiers when it comes to the combination of predictive performance and interpretability. We show that Classy is insensitive to its only parameter, i.e., the candidate set, and that compression on the training set correlates with classification performance, validating our MDL-based selection criterion

    Network Model Selection Using Task-Focused Minimum Description Length

    Full text link
    Networks are fundamental models for data used in practically every application domain. In most instances, several implicit or explicit choices about the network definition impact the translation of underlying data to a network representation, and the subsequent question(s) about the underlying system being represented. Users of downstream network data may not even be aware of these choices or their impacts. We propose a task-focused network model selection methodology which addresses several key challenges. Our approach constructs network models from underlying data and uses minimum description length (MDL) criteria for selection. Our methodology measures efficiency, a general and comparable measure of the network's performance of a local (i.e. node-level) predictive task of interest. Selection on efficiency favors parsimonious (e.g. sparse) models to avoid overfitting and can be applied across arbitrary tasks and representations. We show stability, sensitivity, and significance testing in our methodology
    • …
    corecore