74,244 research outputs found

    Primordial Black Holes: Observational Characteristics of The Final Evaporation

    Full text link
    Many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 10^5 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. The final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. The implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5 -10 TeV range.Comment: Accepted to Astroparticle Physics Journal (71 Pages, 22 Figures

    Robust graphical modeling of gene networks using classical and alternative T-distributions

    Full text link
    Graphical Gaussian models have proven to be useful tools for exploring network structures based on multivariate data. Applications to studies of gene expression have generated substantial interest in these models, and resulting recent progress includes the development of fitting methodology involving penalization of the likelihood function. In this paper we advocate the use of multivariate tt-distributions for more robust inference of graphs. In particular, we demonstrate that penalized likelihood inference combined with an application of the EM algorithm provides a computationally efficient approach to model selection in the tt-distribution case. We consider two versions of multivariate tt-distributions, one of which requires the use of approximation techniques. For this distribution, we describe a Markov chain Monte Carlo EM algorithm based on a Gibbs sampler as well as a simple variational approximation that makes the resulting method feasible in large problems.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS410 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    High-energy astroparticle physics

    Full text link
    In these three lectures I discuss the present status of high-energy astroparticle physics including Ultra-High-Energy Cosmic Rays (UHECR), high-energy gamma rays, and neutrinos. The first lecture is devoted to ultra-high-energy cosmic rays. After a brief introduction to UHECR I discuss the acceleration of charged particles to highest energies in the astrophysical objects, their propagation in the intergalactic space, recent observational results by the Auger and HiRes experiments, anisotropies of UHECR arrival directions, and secondary gamma rays produced by UHECR. In the second lecture I review recent results on TeV gamma rays. After a short introduction to detection techniques, I discuss recent exciting results of the H.E.S.S., MAGIC, and Milagro experiments on the point-like and diffuse sources of TeV gamma rays. A special section is devoted to the detection of extragalactic magnetic fields with TeV gamma-ray measurements. Finally, in the third lecture I discuss Ultra-High-Energy (UHE) neutrinos. I review three different UHE neutrino detection techniques and show the present status of searches for diffuse neutrino flux and point sources of neutrinos.Comment: 29 pages, Lectures given at the 5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 200

    Massive Stars as Major Factories of Galactic Cosmic Rays

    Full text link
    The identification of major contributors to the locally observed fluxes of Cosmic Rays (CRs) is a prime objective towards the resolution of the long-standing enigma of CRs. We report on a compelling similarity of the energy and radial distributions of multi-TeV CRs extracted from observations of very high energy (VHE) γ\gamma-rays towards the Galactic Center (GC) and two prominent clusters of young massive stars, Cyg~OB2 and Westerlund~1. This resemblance we interpret as a hint that CRs responsible for the diffuse VHE γ\gamma-ray emission from the GC are accelerated by the ultracompact stellar clusters located in the heart of GC. The derived 1/r1/r decrement of the CR density with the distance from a star cluster is a distinct signature of continuous, over a few million years, CR injection into the interstellar medium. The lack of brightening of the γ\gamma-ray images toward the stellar clusters excludes the leptonic origin of γ\gamma-radiation. The hard, E2.3\propto E^{-2.3} type power-law energy spectra of parent protons continues up to \sim 1 PeV. The efficiency of conversion of kinetic energy of stellar winds to CRs can be as high as 10 percent implying that the young massive stars may operate as proton PeVatrons with a dominant contribution to the flux of highest energy galactic CRs.Comment: minor revisions have been applied to address the referees' comments, conclusion unchange

    Statistical distributions in the folding of elastic structures

    Get PDF
    The behaviour of elastic structures undergoing large deformations is the result of the competition between confining conditions, self-avoidance and elasticity. This combination of multiple phenomena creates a geometrical frustration that leads to complex fold patterns. By studying the case of a rod confined isotropically into a disk, we show that the emergence of the complexity is associated with a well defined underlying statistical measure that determines the energy distribution of sub-elements,``branches'', of the rod. This result suggests that branches act as the ``microscopic'' degrees of freedom laying the foundations for a statistical mechanical theory of this athermal and amorphous system
    corecore