576 research outputs found

    The Fuzzy Feedback Scheduling of Real-Time Middleware in Cyber-Physical Systems for Robot Control

    Get PDF
    Cyber-physical systems for robot control integrate the computing units and physical devices, which are real-time systems with periodic events. This work focuses on CPS task scheduling in order to solve the problem of slow response and packet loss caused by the interaction between each service. The two-level fuzzy feedback scheduling scheme is designed to adjust the task priority and period according to the combined effects of the response time and packet loss. Empirical results verify the rationality of the cyber-physical system architecture for robot control and illustrate the feasibility of the fuzzy feedback scheduling method

    Towards a cyber physical system for personalised and automatic OSA treatment

    Get PDF
    Obstructive sleep apnea (OSA) is a breathing disorder that takes place in the course of the sleep and is produced by a complete or a partial obstruction of the upper airway that manifests itself as frequent breathing stops and starts during the sleep. The real-time evaluation of whether or not a patient is undergoing OSA episode is a very important task in medicine in many scenarios, as for example for making instantaneous pressure adjustments that should take place when Automatic Positive Airway Pressure (APAP) devices are used during the treatment of OSA. In this paper the design of a possible Cyber Physical System (CPS) suited to real-time monitoring of OSA is described, and its software architecture and possible hardware sensing components are detailed. It should be emphasized here that this paper does not deal with a full CPS, rather with a software part of it under a set of assumptions on the environment. The paper also reports some preliminary experiments about the cognitive and learning capabilities of the designed CPS involving its use on a publicly available sleep apnea database

    Digital-Twins towards Cyber-Physical Systems: A Brief Survey

    Get PDF
    Cyber-Physical Systems (CPS) are integrations of computation and physical processes. Physical processes are monitored and controlled by embedded computers and networks, which frequently have feedback loops where physical processes affect computations and vice versa. To ease the analysis of a system, the costly physical plants can be replaced by the high-fidelity virtual models that provide a framework for Digital-Twins (DT). This paper aims to briefly review the state-of-the-art and recent developments in DT and CPS. Three main components in CPS, including communication, control, and computation, are reviewed. Besides, the main tools and methodologies required for implementing practical DT are discussed by following the main applications of DT in the fourth industrial revolution through aspects of smart manufacturing, sixth wireless generation (6G), health, production, energy, and so on. Finally, the main limitations and ideas for future remarks are talked about followed by a short guideline for real-world application of DT towards CPS

    QoS Challenges and Opportunities in Wireless Sensor/Actuator Networks

    Get PDF
    A wireless sensor/actuator network (WSAN) is a group of sensors and actuators that are geographically distributed and interconnected by wireless networks. Sensors gather information about the state of physical world. Actuators react to this information by performing appropriate actions. WSANs thus enable cyber systems to monitor and manipulate the behavior of the physical world. WSANs are growing at a tremendous pace, just like the exploding evolution of Internet. Supporting quality of service (QoS) will be of critical importance for pervasive WSANs that serve as the network infrastructure of diverse applications. To spark new research and development interests in this field, this paper examines and discusses the requirements, critical challenges, and open research issues on QoS management in WSANs. A brief overview of recent progress is given.Comment: 12 pages, 1 figure; revie

    MISSION-ORIENTED HETEROGENEOUS ROBOT COOPERATION BASED ON SMART RESOURCES EXECUTION

    Full text link
    Home environments are changing as more technological devices are used to improve daily life. The growing demand for high technology in our homes means that robot integration will soon arrive. Home devices are evolving in a connected paradigm in which data flows to perform efficient home task management. Heterogeneous home robots connected in a network can establish a workflow that complements their capabilities and so increases performance within a mission execution. This work addresses the definition and requirements of a robot-group mission in the home context. The proposed solution relies on a network of smart resources, which are defined as cyber-physical systems that provide high-level service execution. Firstly, control middleware architecture is introduced as the execution base for the Smart resources. Next, the Smart resource topology and its integration within a robotic platform are addressed. Services supplied by Smart resources manage their execution through a robot behavior architecture. Robot behavior execution is hierarchically organized through a mission definition that can be established as an individual or collective approach. Environment model and interaction tasks characterize the operation capabilities of each robot within a mission. Mission goal achievement in a heterogeneous group is enhanced through the complement of the interaction capabilities of each robot. To offer a clearer explanation, a full use case is presented in which two robots cooperate to execute a mission and the previously detailed steps are evaluated. Finally, some of the obtained results are discussed as conclusions and future works is introduced.Los entornos domésticos se encuentran sometidos a un proceso de cambio gracias al empleo de dispositivos tecnológicos que mejoran la calidad de vida de las personas. La creciente demanda de alta tecnología en los hogares señala una próxima incorporación de la robótica de servicio. Los dispositivos domésticos están evolucionando hacia un paradigma de conexión en el cual la información fluye para ofrecer una gestión más eficiente. En este entorno, robots heterogéneos conectados a la red pueden establecer un flujo de trabajo que ofreciendo nuevas soluciones y incrementando la eficiencia en la ejecución de tareas. Este trabajo aborda la definición y los requisitos necesarios para la ejecución de misiones en grupos de robots heterogéneos en entornos domésticos. La solución propuesta se apoya en una red de Smart resources, que son definidos como sistemas ciber-físicos que proporcionan servicios de alto nivel. En primer lugar, se presenta la arquitectura del middleware de control en la cual se basa la ejecución de los Smart resources. A continuación se detalla la topología de los Smart resources, así como su integración en plataformas robóticas. Los servicios proporcionados por los Smart resources gestionan su ejecución mediante una arquitectura de comportamientos para robots. La ejecución de estos comportamientos se organiza de forma jerárquica mediante la definición de una misión con un objetivo establecido de forma individual o colectiva a un grupo de robots. Dentro de una misión, las tareas de modelado e interacción con el entorno define las capacidades de operación de los robots dentro de una misión. Mediante la integración de un grupo heterogéneo de robots sus diversas capacidades son complementadas para el logro un objetivo común. A fin de caracterizar esta propuesta, los mecanismos presentados en este documento se evaluarán en detalle a lo largo de una serie experimentos en los cuales un grupo de robots heterogéneos ejecutan una misión colaborativa para alcanzar un objetivo común. Finalmente, los resultados serán discutidos a modo de conclusiones dando lugar el establecimiento de un trabajo futuro.Els entorns domèstics es troben sotmesos a un procés de canvi gràcies a l'ocupació de dispositius tecnològics que milloren la qualitat de vida de les persones. La creixent demanda d'alta tecnologia a les llars assenyala una propera incorporació de la robòtica de servei. Els dispositius domèstics estan evolucionant cap a un paradigma de connexió en el qual la informació flueix per oferir una gestió més eficient. En aquest entorn, robots heterogenis connectats a la xarxa poden establir un flux de treball que ofereix noves solucions i incrementant l'eficiència en l'execució de tasques. Aquest treball aborda la definició i els requisits necessaris per a l'execució de missions en grups de robots heterogenis en entorns domèstics. La solució proposada es recolza en una xarxa de Smart resources, que són definits com a sistemes ciber-físics que proporcionen serveis d'alt nivell. En primer lloc, es presenta l'arquitectura del middleware de control en la qual es basa l'execució dels Smart resources. A continuació es detalla la tipologia dels Smart resources, així com la seva integració en plataformes robòtiques. Els serveis proporcionats pels Smart resources gestionen la seva execució mitjançant una arquitectura de comportaments per a robots. L'execució d'aquests comportaments s'organitza de forma jeràrquica mitjançant la definició d'una missió amb un objectiu establert de forma individual o col·lectiva a un grup de robots. Dins d'una missió, les tasques de modelatge i interacció amb l'entorn defineix les capacitats d'operació dels robots dins d'una missió. Mitjançant la integració d'un grup heterogeni de robots seves diverses capacitats són complementades per a l'assoliment un objectiu comú. Per tal de caracteritzar aquesta proposta, els mecanismes presentats en aquest document s'avaluaran en detall mitjançant d'una sèrie experiments en els quals un grup de robots heterogenis executen una missió col·laborativa per aconseguir un objectiu comú. Finalment, els resultats seran discutits a manera de conclusions donant lloc a l'establiment d'un treball futur.Munera Sánchez, E. (2017). MISSION-ORIENTED HETEROGENEOUS ROBOT COOPERATION BASED ON SMART RESOURCES EXECUTION [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/88404TESI

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    corecore